bannerbanner
Неизвестная энергия. Природа, действие и продукты
Неизвестная энергия. Природа, действие и продукты

Полная версия

Неизвестная энергия. Природа, действие и продукты

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
10 из 11

Основной вывод – для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов.


Атомное ядро и частицы его оболочек


Атомные ядра химических элементов, в том числе и протон, образуются при распаде нейтральных ядер в основном по схеме распада нейтрона, кроме LENR и ионно-ядерных реакций. Атомные ядра имеют оболочечную структуру из нейтральных мезонов (фото 15).


Фото 15. Оболочечная структура ядер из мезонов


На фото 16 приведено ядро атома водорода – протон в покое.


Фото 16. Структура протона и антипротона из мезонов


Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней половиной положительной превращает его в протон (антипротон) с геометрической формой внешней части представленной на фото 16, слева (справа). Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной вечной энергией пяти магнитных монополей, пульсирующих с разной частотой. Даже две внешние положительные оболочки порождают такой недостаточный положительный (отрицательный) электрический заряд из зёрен-потенциалов на поверхности протона (антипротона), который один электрон (позитрон) в атоме водорода (антиводорода) (фото 12) перекрывает полностью и даже остаётся излишек – образуется атом водорода с достаточно большой энергией сродства к электрону (электроотрицательность атома водорода), который способен присоединить ещё один протон с образованием уже достаточно устойчивой молекулы водорода. Поэтому более стабильна молекула водорода. У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней (фото 16) порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада – это наиболее стабильная частица из числа всех известных.

Превращения структуры протона при увеличении энергии на ускорителях и коллайдерах.

Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, т.е. с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы – ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю.

Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения (он пропорционален массе) и синхронизм нарушается. Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, т.е. путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон (фото 16) поэтапно превращается в дейтрон, тритон и т.д., а при встречных соударениях с аналогичными продуктами ускоренных антипротонов путём осевой имплозии, переходящей сгустками в центральную имплозию, порождает многооболочечную структуру ядер (фото 15) и рождаются антидейтроны, антигелий-3 или антитритий.

Высокоинтенсивные электроимпульсные короткие (5—50 микросекунд) разряды-процессы в водяном плазмоиде Вачаева реализуют превращения протон-дейтрон-тритон-гелий. Этот же метод позволяет получить из протонов и кислорода воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне частот на которых работает реактор Вачаева реализован на 30—60 МГц (производство электроэнергии) и 30—60 ГГц (холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии). Для некоторых элементов получены значения предельных токов разряда (кА /мм2), при которых еще возможна реакция превращения-синтеза структуры атомных ядер: Li = 23,8; Na = 29,5; К = 26,2; Pb = 21,6; Cs=19,1;Cu =44.0; Au = Ag= 43,0; Be =39,2; Ca =78,0; Fe = 47,1; Zn = 42,4; Pt = 40,0; Sb =40,8; Sn = 43,8; Al = 14,25. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Вода, являющаяся продуктом реакции после прохождения реактора, имеет следуюцие характеристики: рН – 6,0—6,8; Д2О – тяжёлая вода 0,05%; Т2О – сверхтяжёлая вода 0,05%.Таким образом, наличие стабильного дейтрона и бета-радиоактиного тритона в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту – переход с увеличением энергии в новый более тяжёлый элемент.


Атомные ядра химических элементов, в том числе и протон, образуются при распаде нейтральных ядер в основном по схеме распада нейтрона, кроме LENR. В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента – положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй отторгнутой замкнутой частицей (электрон и антинейтрино). Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям.

Эта внешняя оболочка с замкнутым контуром в форме двух полусфер (фото 16) в структуре атомного ядра и является той поверхностью, на которой два разных магнитных монополя квантуют на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрического потенциала. При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра – это и есть электрический эфир с положительным знаком заряда.

Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента и измеряемый в системе СИ, мерилом которого является количество электронов на оболочках атома.

Так рождается бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра. В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу – процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты.

Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, т.е. процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета- минус – отрыв частицы с отрицательной полусферой.

Образовавшиеся стабильные ядра имеют заряд электрическим потенциалом, размер и спин, формируемые вихронами внешней оболочки. Электрический заряд ядра создаётся волноводами магнитных монополей этих вихронов, которые в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, определяя заряд ядра, который определяется количеством электронов в нейтральном атоме.

Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000. Почему столько много радиоактивных нестабильных тяжёлых изотопов? Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, т.е. положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одноядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада.

Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет – это кластеры плотной чёрной ядерно-мезонной плазмы, т.е. смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер.

Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и структуру. Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых. Большинство ядер имеют по несколько изотопов. Некоторые элементы в природе представлены лишь одним стабильным изотопом – это 9Be, 19F, 23Na, 27Al, 31P, 45Sc, 59Co, 75As, 89Y, 93Nb, 103Rh, 127I, 133Cs, 141Pr, 159Tb, 165Ho, 169Tm, 197Au, 209Bi. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины. Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально.

Структура, спин, размер, масса, электрический заряд ядер от протона до размера ядер конца таблицы Менделеева определяется не количеством протонов и нейтронов в ядре, а количеством внутренних оболочек со структурой гравиэлектромагнитных диполей из нейтральных частиц типа π, k и далее до Y-мезонов, составленных попарно из противоположных частиц по структуре похожих на мюоны, положительно и отрицательно заряженных – полусферы волноводов зёрен-потенциалов со структурой гравиэлектромагнитных монополей со спином ½, образованы полярными ядерными вихронами. Эти состояния ядер обеспечиваются вечной энергией соответствующих магнитных монополей, входящих в состав мезонов. Энергия монополя равна произведению постоянной Планка на его частоту пульсаций. Размер диаметра сферической оболочки соответствующего мезона определяется полволной произведения постоянных Планка и скорости света, делённого на энергию магнитного монополя. Так для Y-ипсилон мезона этот размер составляет величину ≈ 1,2 х 10 -14 см, и который центрально входит в объём других внешних оболочек ядра. В этом смысле структура ядер, отдалённо напоминает структуру электронных атомных оболочек.

Токи пульсаций в атомном ядре. Внешние оболочки атомных ядер у всех одинаковы и соответствуют структуре оболочек протона. В каждой внутренней оболочке атомного ядра, состоящей из пары сфер противоположных ГЭММ их пульсаций в форме волноводов, идут непрерывно синхронные встречные импульсы разрядки-зарядки триады монополей одной определённой частоты с регенерацией гравитационного монополя магнитным. Эти процессы сопровождаются последовательно-параллельной конденсацией электрических и гравитационных зерен-потенциалов на соответствующих дискретных волноводах. В результате аннигиляции части зерен электрических волноводов рождается зона холодной безмассовой плазмы, которая приводит к следующему каскаду превращений ядра в целом – на поверхности оболочек ядер проявляется самая сильная разность потенциалов, в то время, как в плоскости перпендикулярной оси вращения, рождается пространство с нулевым потенциалом, происходит процесс стягивания половин оболочки в одну целую сферу с рождением ядра высокой плотности. В следующее мгновение процесс повторяется. Одноименные зёрна-потенциалы выталкиваются наружу, формируя внешние поля – электрическое, гравитационное и магнитное. Чем больше оболочек в атомном ядре, тем сильнее внешнее поле из соответствующих зёрен-потенциалов, т.е. по САП электрический и массовый заряд ядра, спин, магнитный момент ядра и другие.

Размер его волновода в момент окончания разрядки источника является мерой энергии (частоты пульсаций) и колеблется в пределах от 10-13-10-15 см. Причём, эта сфера заряда энергии вращается от поверхности до центра атомного ядра. По окончанию разрядки регенерируемый магнитный монополь переходит в гравитационный. Этот процесс повторяется с определённой для каждой оболочки частотой, при котором старый волновод обновляется новым и выталкивается во внешнее пространство, формируя внешнее поле. Поэтому большее время сфера источника переменного диаметра находится в состоянии движения вращения при формировании волновода. Излучается квант магнитного вихревого потока зёрен-потенциалов, который выталкивается новым формирующимся четверть-волноводом, определяя магнитные параметры ядра.

В отличие от структуры электромагнитных зёрен свободного магнитного монополя микровихрона фотона, в оболочке ядра гравитационный монополь образуется из магнитного монополя путём его квантовой конденсации в ГЭММ, а структура его зерен двух волноводов становится электро-гравитационной. Активизация пульсаций ГЭММ согласно полуцелому спину происходит неполной, т.е. магнитный монополь ГЭММ данной оболочки имеет только один знак заряда энергии, а процесс исполнения закона сохранения энергии реализуется его квантовым переходом в гравитационный. Процесс разрядки-зарядки, в отличие от фотона, носит характер не виртуального оптического отражения движения на четверти-волновода в зеркале, а материального отражения без переноса места расположения заряда энергии ГЭММ. Эффективный размер фазового объёма спиральных четверть-волноводов пульсирующих токов данной оболочки ядра в состоянии покоя составляет величину 10—13 -10-15 см.

Размер же источника оболочки ГЭММ в свернутом состоянии покоя сферы может достигать размеров 10—23 см. Частота колебаний ГЭММ из свёрнутого состояния сферы-осциллятора в состояние развёрнутого волновода четверти длины волны составляет величину около 1023 Гц.

Так, например, дейтрон имеет такой же размер 4,1 фм, что и ядро кальция (4,1х 10 —13 см), т.е. до ядра кальция заряд массы всех предыдущих ядер формировалась за счёт заполнения внутренней центральной сферы протона внутренними биполярными оболочками со структурой похожей на π-ноль мезона с помощью соответствующих и более высокоэнергетических (таблица мезонов). Этот немаловажный фактор свидетельствует о смене механизма производства атомных ядер. Последующее увеличение массы и электрического заряда ядра обусловлено уже, как за счёт заполнения внутренней свободной сферы оболочками с размерами менее 10—14 – 10—15 см, так и за счёт перераспределения частот вихронов, формирующих верхние этажи оболочек, в сторону уменьшения их диаметра – увеличения значения частот, например, смена внешних пи-мезонов у протона на k-мезоны и т. д. Таким образом размер ядра с увеличением массы только уменьшается в размерах, в отличие от протон-нейтронной модели, согласно которой в СИ размер увеличивается пропорционально корню кубическому из числа массы ядра. Это приводит к ошибке, что размер ядра свинца примерно в шесть раз больше протона. Энергия (масса в системе СИ) атомного ядра будет равна суммарной энергии оболочек всех мезонов, входящих в это ядро.

Спин ядра чередуется сменой чётной массы в соответствии с представлениями САП на нечётную к последующему изотопу этого ядра элемента с целочисленного значения на полуцелое. Пульсирующая внешняя оболочка ядер, состоящая из половины внутренней и половины внешней, заполняет электрическим эфиром внешнего поля дискретное пространство в атоме и определяет суммарный заряд поверхности ядра электрическим потенциалом и спин. Именно форма волновода вносит основной вклад в спин ядра и может иметь структуру мюона, как и у протона, для формирования полуцелого спина, так и структуру сферы законченного внешнего слоя электронов для гелия с чётной массой при определении значения целочисленного спина. По сравнению с размерами структуры ядерных магнитных монополей вихронов, пространство волноводов атомного ядра такое же «пустое, как вакуум Вселенной», как и пространство электронных оболочек в атоме. Минимальный размер и максимальная частота монополя вихрона ограничены лишь планковскими пределами. Это подтверждают и эксперименты на Брукхейвенском коллайдере с встречными пучками ядер золота и дейтонов и многими другими.


Продукты энергии микровихронов – Мезоны, как оболочки атомных ядер.

Мезоны – это промежуточные состояния распадающихся оболочек, образующих внутренние и внешние оболочки атомных ядер (таблица мезонов). Основной источник этих мезонов верхние слои атмосферы, с ядрами атомов газа которой сталкиваются космические и солнечные протоны. Процесс производства мезонов – это ионизация оболочек атомных ядер, т.е. ядерных оболочек, мгновенно распадающихся в более долго живущие подобные частицы с тем же спином, т.е. в мезоны. Время, которое затрачивается на переход таких микрочастиц к мезонам от момента взаимодействия до их рождения, является сугубо ядерным и оценивается порядком 10—23 секунды. За такое время зарегистрировать истинную частицу, её структуру и другие параметры совершенно невозможно.

Таблица мезонов.


Таблица мезонов


В последнее время фоторождение π-мезонов на ядрах производится с помощью гамма – излучения с энергией до 1,5 Гэв, полученное при обратном комптоновском рассеянии фотонов с энергией 2—2,5 кэв на электронных пучках накопителей с энергией до 6 Гэв, так как время жизни свободных пи-мезонов достаточно велико и средняя длина их свободного пробега сравнима с радиусом легкого ядра.

Мезоны участвуют во всех известных типах взаимодействий. Поэтому их структурный состав в основном представлен частицами в состоянии с целочисленным спином. На фото 17 приведены схемы мгновенных структур фазовых замкнутых объёмов мезонов. В динамике движения магнитных монополей, образующих мезоны в свободном пространстве, возможно самое широкое многообразие таких форм, зависимых от полей окружения.


Фото 17. Схемы π – мезонов и структуры их волноводов.


На фото 17 приведены π˚-мезоны, нейтральные (первая и вторая позиции слева, сверху), причём на второй позиции указаны внутри волноводы из гравитационных зёрен-потенциалов, а также пи-плюс и пи-минус мезоны (позиции справа и внизу). Они все нестабильны и имеют спин равный нулю.

Нейтральные мезоны – это промежуточное состояние замкнутых распадающихся оболочек ядер, образованные парами переходных ядерных и противоположных магнитных монополей, которые уже неспособны создавать даже нестабильные частицы с полуцелым спином. Эти монополи аналогичны тем, которые создают частицы со спином ½ – электроны, позитроны и мюоны, но стабильно существовать могут только в составе ядерных оболочек. Однако их частоты и соответствующие размеры существенно выше и меньше названных. Пары из таких частиц, как и пары из электронов и электрон-позитронов, в свободном состоянии способны лишь образовывать нестабильные частицы с нулевым спином и суммарным зарядом гравитационного потенциала – массой покоя мезонов. Это и есть микрочастицы со структурой гравиэлектромагнитных диполей.

Заряженные мезоны – это остатки распадающихся внешних оболочек ядер, которые образованы парами с одинаковым зарядом соответствующих магнитных монополей, образующих структуру частицы с нулевым спином.

Внешние поля мезонов формируются также как и у электронов и мюонов. Масса-энергия этих мезонов в системе СИ равна соответственно 139,56 и 139,567 Мэв, соответственно, а размер фазового объёма (геометрической пространственной структуры внешних контуров) немного меньше размера мюонов и во много раз меньше соответствующего размера электронов.

Нейтральный (π-ноль) мезон имеет массу 134,96 Мэв и распадается за время 0,83х 10—16 с, превращаясь в два гамма кванта фото 18) – акт аннигиляции пары.


Фото 18. Распады мезонов, слева нейтрального, справа заряженных.


Заряженные мезоны распадаются за время 2,6 х 10—8 с, превращаясь в одноименно заряженные мюоны и соответствующие нейтрино.

Непрерывное изменение параметров вещественной материи этих частиц происходит через соответствующие законы сохранения (сохранение средней энергии) при самоиндукции зарядов энергии из формы покоя (гравитационный) в форму замкнутого движения (магнитный) с построением волновода геометрической структуры (электрический). При этом имеется две возможности построения волноводов геометрической структуры частиц. Первая – разряд магнитного монополя с перезарядкой знака через посредство электрического монополя и последующим квантовым переходом в гравитационный монополь, который опять при разрядке регенерирует первичный магнитный, т.е. образуется замкнутый волновод π-ноль мезона, как основа внутренних ядерных оболочек. Вторая – образование волновода заряженных мезонов из двух одинаковых по знаку магнитных монополей, объединённых в пары с противоположно направленными спинами по аналогии куперовских пар электронов, как основа внешних оболочек ядер. Этот процесс аналогичен для всех замкнутых вихронов и определяется только параметрами магнитного монополя – частота колебаний, значение заряда, степень поляризации, время зарядки.

У каждого типа частиц есть античастица. Обычно это отдельная частица, но бывает так, что античастица и частица – это одно и то же. Только частицы, удовлетворяющие определённым условиям (к примеру, электрически нейтральные) могут быть античастицами сами себе. Фотон является одновременно и античастицей по отношению к себе. У некоторых других частиц есть отдельные античастицы, обладающие той же массой, но противоположным электрическим зарядом. Нейтральные мезоны – примеры электрически нейтральной частицы, являющейся античастицей самой себе.

Механизм индукции массы и спина.

У π-мезонов, в отличие от электронов и мюонов, гравитационный монополь и его внешнее поле, как заряд массы, суммируется из двух независимых, но электрически связанных зоной холодной безмассовой плазмы волноводов гравпотенциалов двух замкнутых оболочек (фото 16) – двухконтурный с активированной структурой гравиэлектромагнитного диполя. Спины источников движения складываясь по знаку определяют целочисленный спин мезона. Периодически обновляемый волновод из гравпотенциалов, также как и волновод из электропотенциалов, во внешнем поле формирует гравитационное поле с отрицательной массой, противоположной по знаку центральному гравитационному полю Земли.

К-ноль и К-плюс мезоны (или каоны) также нестабильны, имеют спин равный нулю. Масса этих мезонов равна в системе СИ соответственно 497,67 Мэв и 493,667 Мэв. Структура фазового пространства аналогична π-ноль и π-плюс мезонам, только частота вихронов в них в несколько раз больше, а размер в соответствующее число раз меньше.

На страницу:
10 из 11

Другие книги автора