bannerbanner
Чудеса арифметики от Пьера Симона де Ферма
Чудеса арифметики от Пьера Симона де Ферма

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 10

Но ведь это же не рядовая теорема, на ней держится вся наука! А что же у Евклида? О, Господи! По сути, его доказательство такое же, как у Гаусса, т.е. ошибочное!!! Рассказать кому, так ведь и не поверят! На одном и том же месте споткнулись аж три гиганта науки: Евклид, Эйлер и Гаусс! Но тогда выходит, что вся эта наука липовая, а теперь, благодаря книге Сингха и вопреки всем благим намерениям автора, эта наводившая на всех ужас ВТФ, которая теперь даже в теории стала вообще недоказуемой, рассвирепела так, что, как истинное чудовище, одним махом обесценила все вековые труды учёных! Но они-то живут не в сказочном, а в настоящем королевстве кривых зеркал, и сами-то ещё ничего об этом не знают.

Фиаско, которое потерпели академики Коши и Ламе, не привело к отказу от использования в науке суррогатов чисел, тем более, что сокрушивший их работы Куммер нашёл способ, позволяющий, (при небольшой модернизации), доказывать ВТФ для любого конкретного частного случая. До окончательной победы над ней оставалась лишь самая малость – получить единое общее доказательство. С тех пор прошло уже 170 лет, а воз и ныне там. Поддержанные в своё время гением Эйлера «комплексные числа» и в наши дни представляются как некое расширение понятия числа. Это выглядит очень внушительно и солидно, но всё же требует чёткого определения самого этого понятия. А вот как раз с этим дела совсем плохи.

Студенты, интуитивно чувствующие, что их понапрасну мучают той самой филькиной грамотой про какие-то несуществующие числа, возьми, да и спроси: «А что такое число?» Им и невдомёк, что ни один профессор ничего путного ответить на этот вопрос не может, даже если он перечитал всё, что только есть по математике. Один из них всё же не выдержал издевательских намеков и издал целую книжку под названием «Что такое число?» [13, 29]. В ней он столько всего понаписал, что студенты чётко усвоили – такой вопрос лучше не задавать.

Тем временем учёные продолжали двигать науку вперед, не заморачиваясь на таких мелочах как сущность понятия числа. Так они насоздавали целую кучу всяких новых алгебр, пользуясь тем, что никаких препятствий на этом пути не было. Но они не были продолжением вот той, настоящей, основателем которой был первый королевский математик Франсуа Вие́т (François Viète), служивший советником при дворе французского короля Генриха III. Но если эти новые алгебры особые, то их терминология и основы тоже особые.

Рис. 26. Франсуа Вие́т



Так потихоньку в науке стал формироваться некий особенный птичий язык, понятный только авторам этих самых что ни есть новаторских разработок. Дошло даже и до того, что стали появляться математические сообщества, творящие науку только для самих себя любимых и вдобавок к этому из ничего стали появляться новейшие числа: «гиперкомплексные», «кватернионы», «октонионы», и т.п. Правда, впечатление от новинок портил нет-нет, да и высовывающийся неизвестно откуда тот самый кобылий хвост19. Получать этим хвостом по фэйсу не очень-то приятно, но это уже издержки профессии. В стремлении уйти от таких издержек, был найден просто блестящий выход из затруднений с определением сущности понятия числа. Учёные наконец-то осознали, что его нужно выводить из других более простых понятий, например, таких, как понятие «множество». Всё оказалось так просто! Множество – это то, чего много. Ну разве не понятно? Однако опять получилось так, что без пустых множеств никак не обойтись, а в этом случае много может означать ничего и снова возникает вопрос, так что же это такое множество, число или нет?

Рис. 27. Георг Кантор




Георг Кантор (Georg Cantor) разработал свою теорию множеств, которую другие математики, такие как, например, Анри Пуанкаре́ (Henri Poincaré), обзывали всякими нехорошими словами и никак не хотели признавать. Но вдруг неожиданно для всех респектабельное «Лондонское королевское общество», (английская академия наук), в 1904 году взяло, да и наградило Кантора своей медалью. Так вот оказывается, где решаются судьбы науки!20 И всё было бы хорошо, да вдруг опять стряслась ещё одна беда. Откуда ни возьмись, в этой самой теории множеств стали появляться непреодолимые противоречия, о которых также очень подробно рассказывается в книге Сингха. В научном сообществе сразу все переполошились и стали думать, как эту проблему решать. А она упёрлась как в стенку и никак не хотела решаться. Все как-то приуныли, но потом всё-таки опять воспряли.

Ведь теперь-то за дело взялся сам Давид Гилберт (David Hilbert), великий математик, который первым решил труднейшую проблему Варинга, имеющую прямое отношение к ВТФ21. Любопытно, также и то, что Гилберт повторил опыт Эйлера, навеянный, по всей видимости, проблемой ВТФ. Похоже на то, что у Эйлера в какой-то момент стали возникать сомнения в том, что ВТФ вообще доказуема и в качестве аналогичного примера он взял, да и предположил, что уравнение a4+b4+c4=d4 также, как и уравнение Ферма an+bn=cn при n>2, в целых числах неразрешимо, но в конечном итоге всё-таки выяснилось, что он ошибся22.

Рис. 28. Давид Гилберт



По примеру Эйлера в канун XX столетия Гилберт предложил научному сообществу 23 проблемы, которые, по его мнению, в обозримом будущем вряд ли будут решены. Однако коллеги Гилберта справились с ними довольно быстро, а гипотеза Эйлера продержалась почти до XXI века и была опровергнута только с помощью компьютеров, о чём также рассказано в книге Сингха. Вот так подозрение, что ВТФ была всего лишь предположением её автора, лишилось всяких оснований.

С преодолением противоречий в теории множеств Гилберт не справился, да и не мог это сделать, поскольку проблема эта вовсе не математическая, а информационная, и решать её рано или поздно должны были компьютерщики, а когда это произошло, то они на удивление очень легко, (и абсолютно верно), нашли решение, просто ввели запрет на замкнутые цепочки ссылок23. Ясно, что Гилберт тогда не мог об этом знать и решил, что наиболее надёжный заслон противоречиям можно обеспечить с помощью аксиом. Но ведь аксиомы-то не могут создаваться на пустом месте и должны из чего-то исходить, а это что-то есть число, но вот что это такое, ни тогда, ни сейчас никто толком объяснить не может.

Блестящий пример того, что можно натворить с аксиомами, изложен в той же самой книге Сингха. Очевидный казус с отсутствием четкой формулировки понятия числа может невзначай испортить любую радужную картину и с этим нужно что-то делать. Особенно неприятно это вылезает при обосновании тех же «комплексных чисел». Возможно, этим и было вызвано появление в книге Сингха приложения 8 под названием «Аксиомы арифметики», в котором 5 известных ранее аксиом, относящиеся к счёту, не упоминаются вообще, (иначе задумка не пройдет), а те, которые определяют базовые свойства чисел, дополняются и появляется новая аксиома о том, что должны существовать числа n и k, такие, что n + k = 0 и вот теперь-то уже всё в ажуре!

Конечно, сам Сингх никогда не додумался бы до такого. Здесь отчетливо просматривается помощь консультантов, которые почему-то забыли сменить название приложения, ведь это теперь уже не аксиомы арифметики, поскольку от неё теперь остались только рожки да ножки24. Школьная арифметика, которая долгое время, итак, еле держалась на таблице умножения да на пропорциях, теперь уж совсем оскудела. Вместо неё теперь вовсю осваивают калькулятор и компьютер. Если такой вот «прогресс» продолжится и дальше, то переход к жизни на деревьях для нашей цивилизации произойдёт очень быстро и естественно.

На этом фоне действительно выдающееся научное открытие было сделано в Википедии, которая по искусству и масштабам дезинформации просто не имеет себе равных. Долгое время многие думали, что существует всего четыре действия арифметики – это сложение и вычитание, умножение и деление. Ан нет! Есть еще возведение в степень и… извлечение корня (???). Авторы статей, которые выдали нам это «знание» через Википедию, явно оплошали, т.к. извлечение корня – это тоже самое возведение в степень, только не в целую, а в дробную. Нет, конечно, они знали об этом, но вот о чём они и не догадывались, так это о том, что это действие арифметики было ими списано у самого Эйлера из той самой книжки о его чудо алгебре25.

Правильное название шестого действия арифметики – это логарифм, т.е. вычисление показателя степени (x) по заданному числу (y) и основанию степени (z), т.е. из y=zx следует x=logzy. Как и в случае с названием книги Сингха эта ошибка вовсе не случайна, поскольку в рамках арифметики целых чисел логарифмами толком никто не занимался. Если это и случится когда-нибудь, то не раньше, чем лет через пятьсот! А вот что касается действий со степенями, то ситуация здесь ненамного лучше, чем с логарифмами. Если умножение и деление степеней, также, как и возведение степени в степень не представляют каких-то трудностей, то сложение степеней – это пока ещё тёмный лес даже для профессоров.

Прояснение в этом вопросе начинается с ВТФ, которая утверждает, что сумма двух целых чисел в одинаковой целой степени, больше второй, не может быть целым числом в той же степени. В этом смысле эта теорема вовсе никакая не головоломка, а одно из базовых положений, однозначно (!) регламентирующих сложение целых степеней, поэтому она имеет для науки фундаментальное значение26. Тот факт, что ВТФ до сих пор не доказана, свидетельствует лишь о состоянии сегодняшней науки, которая разваливается прямо на глазах. Она не может себе даже и представить, что если бы доказательство от самого Ферма дошло до нас, то оно давно уже преподавалось бы в средней школе.

Рис. 29. Эндрю Биэл



Многие, конечно, воспримут это как сказки, однако разве что совсем уж слепые могут не замечать, что за всей этой нелепой и несуразной историей с ВТФ так явно и неприкрыто торчат уши нечестивого, что достаточно ему было лишить человеческую цивилизацию доступа к работам Ферма по арифметике, как она сразу оказалось полностью дезориентированной. Вместо того, чтобы развивать науку, её стали усиленно разрушать, причём с самыми что ни есть благими намерениями. Но особое рвение у людей появляется тогда, когда возникает какой-нибудь материальный стимул.

Техасский предприниматель Эндрю Биэл (Andrew Beal)27 предложил свою гипотезу, доказательство которой якобы может вывести на очень простое доказательство ВТФ. Поскольку за решение этой задачи предлагалось сначала 5 тыс. $, затем 100 тыс. $, а с 2013 года – целый миллион. Естественно, нашлось множество желающих, которые усердно принялись эту задачу решать. Однако в условиях, когда арифметика уже давно перестала быть первоосновой всех знаний и до сих пор не знает, что такое число, всё оказалось перевёрнутым с ног на голову, т.е. один энтузиаст-любитель смог поставить на уши целиком всю официальную науку, да так, что она по сути уже признала опыт барона Мюнхгаузена с поднятием самого себя за шкирку и при этом даже не пыталась хоть как-то скрыть свою собственную несостоятельность (см. п. 4.5).

Вот так в напряжённых и неустанных поисках доказательства ВТФ почему-то никому и в голову не пришло просто взять, да и поискать рукописи Ферма с выкладками и расчётами, без которых он никак не мог обойтись28. Впрочем, опять-таки из книги Сингха мы узнаём, что такая мысль появилась у Эйлера, который попросил своего друга Клеро, живущего в Лозанне, (город, находящийся совсем не далеко от Тулузы), поискать в доме Ферма хотя бы клочок бумаги, с указаниями на доказательство ВТФ. Но ничего не нашли, а ведь искали-то совсем не то! Нужно-то было искать тайник!!!

Вот тебе раз, час от часу не легче! Что ещё за тайник? … Ах да! Ведь только те работы Ферма сохранились, которые им самим были уже подготовлены для издания, т.к. иначе вряд ли они могли быть опубликованы. Но вот все рабочие рукописи почему-то пропали. Это выглядит очень странно и не исключено, что они могут до сих пор находиться в тайнике, который Ферма оборудовал для хранения вещдоков, необходимых ему для работы в качестве сенатора и судьи высокого ранга. Было вполне разумно хранить там расчёты и доказательства, поскольку научные достижения Ферма могли бы существенно повредить его основной работе, если были бы обнародованы до учреждения Французской Академии наук29.

Если бы мы могли хоть как-то заглянуть в этот тайник, что же мы там увидим? Для начала попробуем найти там какие-нибудь несложные задачи. Вот, например, та, которую Ферма мог бы предложить сегодня для учащихся средней школы:

Разделить число xn−1 на x−1, или число x2n−1 на x±1, или число x2n+1+1 на x+1.

Очевидно, что учащиеся, со знанием решения такой задачи, будут просто на голову превосходить сегодняшних школьников, которых обучают способам определения делимости только на некоторые маленькие числа. Но вот если они ещё будут знать парочку теорем Ферма, то запросто смогут решить и более трудную задачу:

Найти две пары квадратов, каждая из которых в сумме есть одно и то же число в седьмой степени, например,

2217=1511140542+53969305 2=827366542+137487415 2

По сравнению с предыдущей задачей, где вычисления вообще не нужны, в решении этой задачи даже с компьютерным калькулятором придётся с полчаса повозиться, чтобы достичь результата, при этом, кроме понимания сути решения задачи, нужно проявить ещё изрядную долю терпения, упорства и внимания. А кто понимает суть решения, тот сможет найти и другие решения этой задачи30.

Конечно, подобные задачи могут вызвать настоящий шок у сегодняшних учащихся и особенно у их родителей, которые будут даже требовать не «сушить мозги» детям. Но если детские мозги не заполнять элементарными знаниями и не тренировать их с помощью решения соответствующих задач, то они отсохнут и сами собой. Об этом свидетельствует статистика неуклонного снижения показателя IQ сегодняшних учащихся по сравнению с их предшественниками. Ведь на самом деле приведённые выше задачки – это лишь разминка для юного поколения, а вот настоящий фурор дети могли бы произвести на математиков, предложив им простенькие теоремы Ферма о волшебных числах, (см. п. 4.4.). И это ещё большой вопрос, по силам ли эти теоремы сегодняшним профессорам, или им опять потребуется лет триста и повторится история с ВТФ? Впрочем, шансы у них, в отличие от прежних времён, очень велики, т.к. волшебные числа – это прямое следствие того самого «поистине удивительного» доказательства ВТФ, о существовании которого мы имеем прямое письменное свидетельство от самого Ферма.

Реконструкция этого доказательства в кратком виде была опубликована ещё в 2008 г. [30], однако нечестивый был начеку и обстряпал всё так, что современная наука, дезориентированная ложными представлениями о том, что проблема давно решена, не обратила на это событие никакого внимания. Однако всё тайное рано или поздно станет явным и решающее слово, несмотря ни на что, всё равно останется за наукой. Вопрос теперь только в том, когда она, наконец, опомнится и придёт в себя. Чем дольше она будет находиться в благостном состоянии забытья, тем скорее наступят страшные события, уже сейчас начинающие сотрясать наш мир как никогда прежде.

Для того чтобы наука могла одержать вполне заслуженную ею победу над торжествующим сегодня мраком невежества и массовой дезинформации, ей и нужно-то совсем немного. Для начала просто поискать тот самый тайник, в котором могут обнаружиться такие сокровенные тайны науки, которые за три с половиной столетия ничуть не потеряли своей актуальности 31. Даже если найденные в тайнике бумаги окажутся нечитабельными, то всё равно сам факт существования тайника станет свидетельством того, что наука идёт в нужном направлении и результаты не заставят себя долго ждать.

Кое-что в этом направлении мы уже сделали, когда восстановили запись ВТФ на полях «Арифметики» Диофанта (см. рис. 5 и перевод в конце п. 1). Теперь нужно во что бы то ни стало получить полную картину всей последовательности событий, приведших к открытию ВТФ в её конечной формулировке, опубликованной в 1670 г. Это будет совсем не просто, но раз уж мы ввязались в эту историю, то отступать теперь некуда и придётся поднапрячь все наши силы, чтобы достичь цели. Благо, что у нас есть для этого все дарованные нам свыше возможности получить вожделенный доступ к тайнику тулузского сенатора.

3. Что такое число?

3.1. Определение понятия числа

Вопрос о сущности понятия числа во все времена был для учёных некоей вещью в себе. Подспудно они, конечно, понимали, что не могут чётко ответить на этот вопрос, но и признаться в этом они тоже не могут, поскольку это плохо отразилось бы на поддержании престижа науки. В чём тут проблема? Да в том, что число во всех случаях должно получаться из других чисел, иначе оно не сможет восприниматься как число. Чтобы понять, например, число 365, нужно сложить три сотни, шесть десятков и пять единиц. Отсюда, следует, что понятие числа не раскладывается на качественно отличные от него компоненты и таким вот обычным для науки способом, т.е. путем анализа проникнуть в тайну его сущности не удаётся.

Учёные, которые задавались вопросом о сущности числа сразу упирались в эту проблему и приходили к выводу, что общего определения понятия числа просто не существует. Но не таков был Пьер Ферма, который подошёл к этой проблеме с другой стороны. Он задался вопросом: «Откуда вообще появляется понятие числа?», и пришёл к выводу о том, что его предшественниками были понятия «больше», «меньше» и «равно» как результаты сравнений некоторых свойств, присущих разным предметам [30].

Если разные предметы сравниваются по некоторому свойству с одним и тем же предметом, то появляется такое понятие как измерение и тогда может быть через измерение и следует выявлять сущность числа? Однако это не так. По отношению к измерению число первично, т.е. если нет чисел, то не может быть и никаких измерений. Понимание сущности числа становится возможно только после установления того, что число неразрывно связано понятием «функция». А вот это понятие определить совсем не сложно:


Функция – это заданная последовательность действий с её аргументами.


В свою очередь, действия не могут существовать сами по себе, т.е. в состав функции, кроме них должны входить компоненты, с которыми эти действия выполняются. Эти компоненты называются «аргументы функции». Отсюда следует и общее определение понятия числа:


Число есть объективная реальность, существующая как счётная величина, которая состоит из аргументов функции и действий между ними.


Например, a + b + c = d, где a, b, c – аргументы, d – счётная величина или числовое значение32.

Чтобы понять, какая пропасть отделяет Пьера Ферма от остального учёного мира, достаточно сравнить это простое определение с тем пониманием, которое есть в сегодняшней науке [13, 29]. А вот понимание, явно присутствующее в научном творчестве Ферма, позволило ему ещё в те далёкие времена достигать результатов, которые для других учёных оказывались либо сопряжены с чрезвычайными трудностями, либо вообще недостижимы.

Можно дать и более широкое определение понятия числа, а именно:


Число есть разновидность данных, представляемых в виде функций.


Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. Во втором определении нужно ещё разъяснить сущность понятия «данные», однако для науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа33.

Рису. 30. Пифагор



Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число. Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.

Рис. 31. Готфрид Лейбниц



Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц (Gottfried Leibniz). Под мышлением здесь явно понимается процесс обработки данных, которые во всех случаях могут представляться как числа. Тогда понятно, как появляются вычисления, но понимание сути этого процесса у современной науки пока отсутствует 34.

У всех данных здесь определений понятия числа есть одна общая основа:


Числа существуют объективно в том смысле, что они присутствуют в законах окружающего мира, познавать которые можно только через числа.


Со школьной скамьи все узнают о числах из детской считалки: раз, два три, четыре, пять и т.д. Откуда взялась эта считалка, один Господь ведает. Впрочем, были и попытки объяснить её происхождение с помощью аксиом. Однако происхождение их такое же непонятное, как и считалки. Скорее это похоже на некое подражание «Началам» Евклида, чтобы придать знаниям образ науки и внешнюю видимость солидности и фундаментальности.

Ситуация совсем иная, когда есть математическое определение сущности числа. Тогда для более полного его понимания становятся необходимостью и аксиомы, и считалка. Действительно, данное определение сущности числа включает в себя аргументы, действия и счётную величину. Но аргументы – это тоже числа, и они должны представляться не конкретно каждое из них, а по умолчанию, т.е. в форме общепринятой и неизменной функции, которая называется системой счисления, а она-то никак уже не может появиться без такого понятия как счёт. Вот теперь уже по отношению к счёту, аксиомы оказываются весьма кстати и без них он может появиться разве только от пришельцев. Да, собственно, в действительности это так и было, поскольку такие источники знаний как «Начала» Евклида или «Арифметика» Диофанта созданы явно не нашей, а совсем другой цивилизацией35.

Если аксиомы регламентируют счёт, то они первичны по отношению к нему. Однако нет никакой надобности определять их сущность через введение новых понятий, т.к. смысл любых аксиом как раз в их изначальности т.е. они всегда по сути есть границы знаний. Таким образом, аксиомы получают ещё более основополагающий статус, чем до сих пор, когда они ограничивались лишь обоснованием какой-либо конкретной системы.

В частности, система аксиом, разработанная итальянским математиком Джузеппе Пеано (Giuseppe Peano), очень близко соответствуют решению задачи построения системы счёта, хотя вот это основное их предназначение никак не разъяснялось, видимо, с намёком на обоснование сущности понятия числа. Научное сообщество воспринимало их только как некую «формализацию арифметики», совершенно не замечая, что эти аксиомы ни коим образом не отражают сущность чисел, а только создают основы для их представления по умолчанию, т.е. через счёт.

Рис. 32. Джузеппе Пеано



Если основное содержание аксиом – это определение границ знаний, относящихся к общепринятым способам представления чисел, то их следует выстраивать как из определения сущности понятия числа, так и с целью обеспечения прочности и устойчивости всего здания науки. До сих пор из-за отсутствия такого понимания способов построения основ знаний вопрос о сущности числа никогда даже и не ставился, а только усложнялся и запутывался. Но теперь, когда он проясняется, причём без каких-либо особенных затруднений, вся наука может получить новый и очень мощный импульс для своего развития. И вот тогда именно на такой прочной основе она приобретает способности с невероятной лёгкостью преодолевать такие сложнейшие преграды, которые в прежние времена, когда понимания сущности числа не было, представлялись науке как совершенно неприступные крепости 36.

3.2. Аксиомы арифметики

3.2.1. Аксиомы счёта

Этот путь впервые был проложен в конце XIX столетия аксиомами Пеано37. Мы внесём в них изменения, исходя из нашего понимания сущности числа.

Аксиома 1. Натуральным является число, сложенное из единиц 38.

Аксиома 2. Единица является исходным натуральным числом.

Аксиома 3. Все натуральные числа образуют бесконечный ряд, в котором каждое следующее число образуется путём прибавления к предыдущему числу единицы.

На страницу:
5 из 10