bannerbanner
Myths and Marvels of Astronomy
Myths and Marvels of Astronomyполная версия

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
21 из 27

We can understand that, while several have been found who have applauded the sea-bird paradox for what it might do in explaining comets' tails, its advocates have as yet not done much to reconcile it with cometic observation.

The latest astronomical paradox published is perhaps still more startling. It relates to the planet Venus, and is intended to explain the appearance presented by this planet when crossing the sun's face, or, technically, when in transit. At this time she is surrounded by a ring of light, which appears somewhat brighter than the disc of the sun itself. Before fully entering on the sun's face, also, the part of Venus's globe as yet outside the sun's disc is seen to be girt round by a ring of exceedingly bright light—so bright, indeed, that it has left its record in photographs where the exposure was only for the small fraction of a second allowable in the case of so intensely brilliant a body as the sun. Astronomers have not found it difficult to explain either peculiarity. It has been proved clearly in other ways that Venus has an atmosphere like our own, but probably denser. As the sun is raised into view above the horizon (after he has really passed below the horizon plane) by the bending power of our air upon his rays, so the bending power of Venus's air brings the sun into our view round the dark body of the planet. But the new paradox advances a much bolder theory. Instead of an atmosphere such as ours, Venus has a glass envelope; and instead of a surface of earth and water, in some cases covered with clouds, Venus has a surface shining with metallic lustre.53

The author of this theory, Mr. Jos. Brett, startled astronomers by announcing, a few years ago, that with an ordinary telescope he could see the light of the sun's corona without the aid of an eclipse, though astronomers had observed that the delicate light of the corona fades out of view with the first returning rays of the sun after total eclipse.

The latest paradoxist, misled by the incorrect term 'centrifugal force,' proposes to 'modify, if not banish,' the old-fashioned astronomy. What is called centrifugal force is in truth only inertia. In the familiar instance of a body whirled round by a string, the breaking of the string no more implies that an active force has pulled away the body, than the breaking of a rope by which a weight is pulled implies that the weight has exerted an active resistance. Of course, here again the text-books are chiefly in fault.

Such are a few among the paradoxes of various orders by which astronomers, like the students of other sciences, have been from time to time amused. It is not altogether, as it may seem at first sight, 'a sin against the twenty-four hours' to consider such matters; for much may be learned not only from the study of the right road in science, but from observing where and how men may go astray. I know, indeed, few more useful exercises for the learner than to examine a few paradoxes, when leisure serves, and to consider how, if left to his own guidance, he would confute them.

XI.

ON SOME ASTRONOMICAL MYTHS

The expression 'astronomical myth' has recently been used, on the title-page of a translation from the French, as synonymous with false systems of astronomy. It is not, however, in that sense that I here use it. The history of astronomy presents the records of some rather perplexing observations, not confirmed by later researches, but yet not easily to be explained away or accounted for. Such observations Humboldt described as belonging to the myths of an uncritical period; and it is in that sense that I employ the term 'astronomical myth' in this essay. I propose briefly to describe and comment on some of the more interesting of these observations, which, in whatever sense they are to be interpreted, will be found to afford a useful lesson.

It is hardly necessary, perhaps, to point out that the cases which I include here I regard as really cases in which astronomers have been deceived by illusory observations. Other students of astronomy may differ from me as respects some of these instances. I do not wish to dogmatise, but simply to describe the facts as I see them, and the impressions which I draw from them. Those who view the facts differently will not, I think, have to complain that I have incorrectly described them.

At the outset, let me point out that some observations which were for a long time regarded as mythical have proved to be exact. For instance, when as yet very few telescopes existed, and those very feeble, Galileo's discovery of moons travelling round Jupiter was rejected as an illusion for which Satan received the chief share of credit. There is an amusing and yet in one aspect almost pathetic reference to this in his account of his earlier observations of Saturn. He had seen the planet apparently attended on either side by two smaller planets, as if helping old Saturn along. But on December 4, 1612,54 turning his telescope on the planet, he found to his infinite amazement not a trace of the companion planets could be seen; there in the field of view of his telescope was the golden-tinted disc of the planet as smoothly rounded as the disc of Mars or Jupiter. 'What,' he wrote, 'is to be said concerning so strange a metamorphosis? Are the two lesser stars consumed after the manner of the solar spots? Have they vanished or suddenly fled? Has Saturn, perhaps, devoured his children? Or were the appearances, indeed, illusion or fraud with which the glasses have so long deceived me as well as many others to whom I have shown them? Now, perhaps, is the time come to revive the well-nigh withered hopes of those who, guided by more profound contemplations, have discovered the fallacy of the new observations, and demonstrated the utter impossibility of the existence of those things which the telescope appears to show. I do not know what to say in a case so surprising, so unlooked for, and so novel. The shortness of the time, the unexpected nature of the event, the weakness of my understanding, and the fear of being mistaken, have greatly confounded me.' We now know that these observations, as well as those made soon after by Hevelius, though wrongly interpreted, were correct enough. Nay, we know that if either Galileo or Hevelius had been at the pains to reason out the meaning of the alternate visibility and disappearance of objects looking like attendant planets, they must have anticipated the discovery made in 1656 by Huyghens, that Saturn's globe is girdled about by a thin flat ring so vast that, if a score of globes like our earth were set side by side, the range of that row of worlds would be less than the span of the Saturnian ring system.

There is a reference in Galileo's letter to the solar spots; 'Are the two lesser stars,' he says, 'consumed after the manner of the solar spots?' When he thus wrote the spots were among the myths or fables of astronomy, and an explanation was offered, by those who did not reject them utterly, which has taken its place among forsaken doctrines, those broken toys of astronomers. It is said that when Scheiner, himself a Jesuit, communicated to the Provincial of the Jesuits his discovery of the spots on the sun, the latter, a staunch Aristotelian, cautioned him not to see these things. 'I have read Aristotle's writings from beginning to end many times,' he said, 'and I can assure you I have nowhere found in them anything similar to what you mention' [amazing circumstances!] 'Go, therefore, my son, tranquillise yourself; be assured that what you take for spots on the sun are the faults of your glasses or your eyes.' As the idea was obviously inadmissible that a celestial body could be marked by spots, the theory was started that the dark objects apparently seen on the sun's body were in reality small planets revolving round the sun, and a contest arose for the possession of these mythical planets. Tardé maintained that they should be called Astra Borbonia, in honour of the royal family of France; but C. Malapert insisted that they should be called Sidera Austriaca. Meantime the outside world laughed at the spots, and their names, and the astronomers who were thought to have invented both. 'Fabritius puts only three spots,' wrote Burton in his 'Anatomy of Melancholy,' 'and those in the sun; Apelles 15, and those without the sun, floating like the Cyanean Isles in the Euxine Sea. Tardé the Frenchman hath observed 33, and those neither spots nor clouds as Galileus supposed, but planets concentric with the sun, and not far from him, with regular motions. Christopher Schemer' [a significant way of spelling Scheiner's name], 'a German Suisser Jesuit, divides them in maculas et faculas, and will have them to be fixed in solis superficie and to absolve their periodical and regular motions in 27 or 28 dayes; holding withall the rotation of the sun upon his centre, and are all so confident that they have made schemes and tables of their motions. The Hollander censures all; and thus they disagree among themselves, old and new, irreconcilable in their opinions; thus Aristarchus, thus Hipparchus, thus Ptolomæus, thus Albategnius, etc., with their followers, vary and determine of these celestial orbs and bodies; and so whilst these men contend about the sun and moon, like the philosophers in Lucian, it is to be feared the sun and moon will hide themselves, and be as much offended as she was with those, and send another message to Jupiter, by some new-fangled Icaromenippus, to make an end of all these curious controversies, and scatter them abroad.'

It is well to notice how in this, as in many other instances, the very circumstance which makes scientific research trustworthy caused the unscientific to entertain doubt. If men of science were to arrange beforehand with each other what observations they should publish, how their accounts should be ended, what theories they would endeavour to establish, their results would seem far more trustworthy, their theories far more probable, than according to the method actually adopted. Science, which should be exact, seems altogether inexact, because one observer seems to obtain one result, another a different result. Scientific theories seem unworthy of reliance because scientific men entertain for a long time rival doctrines. But in another and a worthier sense than as the words are used in the 'Critic,' when men of science do agree their agreement is wonderful. It is wonderful, worthy of all admiration, because before it has been attained errors long entertained have had to be honestly admitted; because the taunt of inconsistency is not more pleasant to the student of science than to others, and the man who having a long time held one doctrine adopts and enforces another (one perhaps which he had long resisted), is sure to be accused by the many of inconsistency, the truly scientific nature of his procedure being only recognised by the few. The agreement of men of science ought to be regarded also as most significant in another sense. So long as there is room for refusing to admit an important theory advanced by a student of science, it is natural that other students of science should refuse to do so; for in admitting the new theory they are awarding the palm to a rival. In strict principle, of course, this consideration ought to have no influence whatever; as a matter of fact, however, men of science, being always men and not necessarily strengthened by scientific labours against the faults of humanity, the consideration has and must always have influence. Therefore, when the fellow-writers and rivals of Newton or of his followers gave in their adhesion to the Newtonian theory; when in our own time—but let us leave our own time alone, in this respect—when, speaking generally, a novel doctrine, or some new generalisation, or some great and startling discovery, is admitted by rival students of the branch of astronomy to which it belongs, the probability is great that the weight of evidence has been found altogether overwhelming.

Let us now, however, turn to cases in which, while many observations seem to point to some result, it has appeared that, after all, those observations must have been illusory.

A striking instance in point is found in the perplexing history of the supposed satellite of Venus.

On January 25, 1672, the celebrated astronomer, J.D. Cassini saw a crescent shaped and posited like Venus, but smaller, on the western side of the planet. More than fourteen years later, he saw a crescent east of the planet. The object continued visible in the latter case for half an hour, when the approach of daylight obliterated the planet and this phantom moon from view. The apparent distance of the moon from Venus was in both cases small, viz., only one diameter of the planet in the former case, and only three-fifths of that diameter in the latter.

Next, on October 23, 1740, old style, the optician Short, who had had considerable experience in observation, saw a small star perfectly defined but less luminous than Venus, at a distance from the planet equal to about one-third of the apparent diameter of our moon. This is a long distance, and would correspond to a distance from Venus certainly not less than the moon's distance from the earth. Short was aware of the risk of optical illusion in such matters, and therefore observed Venus with a second telescope; he also used four eye-pieces of different magnifying power. He says that Venus was very distinct, the air very pure, insomuch that he was able to use a power of 240. The seeming moon had a diameter less than a third of Venus's, and showed the same phase as the planet. Its disc was exceedingly well defined. He observed it several times during a period of about one hour.

Still more convincing, to all appearance, is the account of the observations made by M. Montaigne, as presented to the Academy of Sciences at Paris by M. Baudouin in 1761. The transit of Venus which was to take place on June 6 in that year led to some inquiry as to the satellite supposed to have been seen by Cassini and Short, for of course a transit would be a favourable occasion for observing the satellite. M. Montaigne, who had no faith in the existence of such an attendant, was persuaded to look for it early in 1761. On May 3 he saw a little crescent moon about twenty minutes of arc (nearly two-thirds the apparent diameter of our moon) from the planet. He repeated his observation several times that night, always seeing the small body, but not quite certain, despite its crescent shape, whether it might not be a small star. On the next evening, and again on May 7 and 10, he saw the small companion apparently somewhat farther from Venus and in a different position. He found that it could be seen when Venus was not in the field of view. The following remarks were made respecting these observations in a French work, 'Dictionnaire de Physique,' published in 1789:—'The year 1761 will be celebrated in astronomy in consequence of the discovery that was made on May 3 of a satellite circulating round Venus. We owe it to M. Montaigne, member of the Society of Limoges. M. Baudouin read before the Academy of Sciences at Paris a very interesting memoir, in which he gave a determination of the revolution and distance of the satellite. From the calculations of this expert astronomer we learn that the new star has a diameter about one-fourth that of Venus, is distant from Venus almost as far as the moon from our earth, has a period of nine days seven hours' [much too short, by the way, to be true, expert though M. Baudouin is said to have been], 'and its ascending node'—but we need not trouble ourselves about its ascending node.

Three years later Rödkier, at Copenhagen, March 3 and 4, 1764, saw the satellite of Venus with a refracting telescope 38 feet long, which should have been effective if longitude has any virtue. He could not see the satellite with another telescope which he tried. But several of his friends saw it with the long telescope. Amongst others, Horrebow, Professor of Astronomy, saw the satellite on March 10 and 11, after taking several precautions to prevent optical illusion. A few days later Montbaron, at Auxerre, who had heard nothing of these observations, saw a satellite, and again on March 28 and 29 it appeared, always in a different position.

It should be added that Scheuten asserted that during the transit of 1761 Venus was accompanied by a small satellite in her motion across the sun's face.

So confidently did many believe in this satellite of Venus that Frederick the Great, who for some reason imagined that he was entitled to dispose as he pleased of the newly discovered body, proposed to assign it away to the mathematician D'Alembert, who excused himself from accepting the questionable honour in the following terms:—

'Your Majesty does me too much honour in wishing to baptize this new planet with my name. I am neither great enough to become the satellite of Venus in the heavens, nor well enough (assez bien portant) to be so on the earth, and I am too well content with the small place I occupy in this lower world to be ambitious of a place in the firmament.'

It is not at all easy to explain how this phantom satellite came to be seen. Father Hell, of Vienna—the same astronomer whom Sir G. Airy suspects of falling asleep during the progress of the transit of Venus in 1769—made some experiments showing how a false image of the planet might be seen beside the true one, the false image being smaller and fainter, like the moons seen by Schort (as Hell called Short), Cassini, and the rest. And more recently Sir David Brewster stated that Wargentin 'had in his possession a good achromatic telescope, which always showed Venus with such a satellite.' But Hell admitted that the falsehood of the unreal Venus was easily detected, and Brewster adds to his account of Wargentin's phantom moon, that 'the deception was discovered by turning the telescope about its axis.' As Admiral Smyth well remarks, to endeavour to explain away in this manner the observations made by Cassini and Short 'must be a mere pleasantry, for it is impossible such accurate observers could have been deceived by so gross a neglect.' Smyth, by the way, was a believer in the moon of Venus. 'The contested satellite is perhaps extremely minute,' he says, 'while some parts of its body may be less capable of reflecting light than others; and when the splendour of its primary and our inconvenient station for watching it are considered, it must be conceded that, however slight the hope may be, search ought not to be relinquished.'

Setting aside Scheuten's asserted recognition of a dark body near Venus during the transit of 1761, Venus has always appeared without any attendant when in transit. As no one else claimed to have seen what Scheuten saw in 1761, though the transit was observed by hundreds, of whom many used far finer telescopes than he, we must consider that he allowed his imagination to deceive him. During the transit of 1769, and again on December 8–9, 1874, Venus certainly had no companion during her transit.

What, then, was it that Cassini, Short, Montaigne, and the rest supposed they saw? The idea has been thrown out by Mr. Webb that mirage caused the illusion. But he appears to have overlooked the fact that though an image of Venus formed by mirage would be fainter than the planet, it would not be smaller. It might, according to the circumstances, be above Venus or below, or even somewhat towards either side, and it might be either a direct or an inverted image, but it could not possibly be a diminished image.

Single observations like Cassini's or Short's might be explained as subjective phenomena, but this explanation will not avail in the case of the Copenhagen observations.

I reject, as every student of astronomy will reject, the idea of wilful deception. Occasionally an observer may pretend to see what he has not seen, though I believe this very seldom happens. But even if Cassini and the rest had been notoriously untrustworthy persons instead of being some of them distinguished for the care and accuracy with which their observations were made and recorded, these occasional views of a phantom satellite are by no means such observations as they would have invented. No distinction was to be gained by observations which could not be confirmed by astronomers possessing more powerful telescopes. Cassini, for example, knew well that nothing but his well-earned reputation could have saved him from suspicion or ridicule when he announced that he had seen Venus attended by a satellite.

It seems to me probable that the false satellite was an optical illusion brought about in a different way from those referred to by Hell and Brewster, though among the various circumstances which in an imperfect instrument might cause such a result I do not undertake to make a selection. It is certain that Venus's satellite has vanished with the improvement of telescopes, while it is equally certain that even with the best modern instruments illusions occasionally appear which deceive even the scientific elect. Three years have passed since I heard the eminent observer Otto Struve, of Pulkowa, give an elaborate account of a companion to the star Procyon, describing the apparent brightness, distance, and motions of this companion body, for the edification of the Astronomer-Royal and many other observers. I had visited but a few months before the Observatory at Washington, where, with a much more powerful telescope, that companion to Procyon had been systematically but fruitlessly sought for, and I entertained a very strong opinion, notwithstanding the circumstantial nature of Struve's account and his confidence (shared in unquestioningly by the observers present), that he had been in some way deceived. But I could not then see, nor has any one yet explained, how this could be. The fact, however, that he had been deceived is now undoubted. Subsequent research has shown that the Pulkowa telescope, though a very fine instrument, possesses the undesirable quality of making a companion orb for all first-class stars in the position where O. Struve and his assistant Lindenau saw the supposed companion of Procyon.

I may as well point out, however, that theories so wild have recently been broached respecting Venus, that far more interesting explanations of the enigma than this optical one may be looked for presently. It has been gravely suggested by Mr. Jos. Brett, the artist, that Venus has a surface of metallic brilliancy, with a vitreous atmosphere,—which can only be understood to signify a glass case. This stupendous theory has had its origin in an observation of considerable interest which astronomers (it is perhaps hardly necessary to say) explain somewhat differently. When Venus has made her entry in part upon the sun's face at the beginning of transit, there is seen all round the portion of her disc which still remains outside the sun an arc of light so brilliant that it records its photographic trace during the instantaneous exposure required in solar photography. It is mathematically demonstrable that this arc of light is precisely what should be seen if Venus has an atmosphere like our earth's. But mathematical demonstration is not sufficient (or perhaps we may say it is too much) for some minds. Therefore, to simplify matters, Venus has been provided with a mirror surface and a glass case. (See preceding essay, on Astronomical Paradoxes, for further details.)

The enigma next to be considered is of a more doubtful character than the myth relating to the satellite of Venus. Astronomers are pretty well agreed that Venus has no moon, but many, including some deservedly eminent, retain full belief in the story of the planet Vulcan.

More than seventeen years ago the astronomical world was startled by the announcement that a new planet had been discovered, under circumstances unlike any which had heretofore attended the discovery of fresh members of the solar system. At that time astronomers had already become accustomed to the discovery, year after year, of several asteroids, which are in reality planets, though small ones. In fact, no less than fifty-six of these bodies were then known, whereof fifty-one had been discovered during the years 1847–1858 inclusive, not one of these years having passed without the detection of an asteroid. But all these planets belonged to one family, and as there was every reason to believe that thousands more travel in the same region of the solar system, the detection of a few more among the number had no longer any special interest for astronomers. The discovery of the first known member of the family had indeed been full of interest, and had worthily inaugurated the present century, on the first day of which it was made. For it had been effected in pursuance of a set scheme, and astronomers had almost given up all hopes of success in that scheme when Piazzi announced his detection of little Ceres. Again the discovery of the next few members of the family had been interesting as revealing the existence of a new order of bodies in the solar system. No one had suspected the possibility that besides the large bodies which travel round the sun, either singly or attended by subordinate families of moons, there might be a ring of many planets. This was what the discovery of Ceres, Pallas, Juno, and Vesta seemed to suggest, unless—still stranger thought—these were but fragments of a mighty planet which had been shattered in long-past ages by some tremendous explosion. Since then, however, this startling theory has been (itself) exploded. Year after year new members of the ring of multitudinous planets are discovered, and that, not as was recently predicted, in numbers gradually decreasing, but so rapidly that more have been discovered during the last ten years than during the preceding twenty.

На страницу:
21 из 27