
Полная версия
Myths and Marvels of Astronomy
He bore this shower of abuse with exceeding patience and good nature. He had not been wholly unprepared for it, in fact; and, as he had a purpose in dealing with the paradoxists, he was satisfied to continue that quiet analysis of their work which so roused their indignation. He found in them a curious subject of study; and he found an equally curious subject of study in their disciples. The simpler—not to say more foolish—paradoxists, whose wonderful discoveries are merely amazing misapprehensions, were even more interesting to De Morgan than the craftier sort who make a living, or try to make a living, out of their pretended theories. Indeed, these last he treated, as they deserved, with a scathing satire quite different from his humorous and not ungenial comments on the wonderful theories of the honest paradoxists.
There is one special use to which the study of paradox-literature may be applied, which—so far as I know—has not hitherto been much attended to. It may be questioned whether half the strange notions into which paradoxists fall must not be ascribed to the vagueness of too many of our scientific treatises. A half-understood explanation, or a carelessly worded account of some natural phenomenon, leads the paradoxist, whose nature is compounded of conceit and simplicity, to originate a theory of his own on the subject. Once such a theory has been devised, it takes complete possession of the paradoxist's mind. All the facts of which he thenceforward hears, which bear in the least on his favourite craze, appear to give evidence in its favour, even though in reality they are most obviously opposed to it. He learns to look upon himself as an unappreciated Newton, and to see the bitterest malevolence in those who venture to question his preposterous notions. He is fortunate if he do not suffer his theories to withdraw him from his means of earning a livelihood, or if he do not waste his substance in propounding and defending them.
One of the favourite subjects for paradox-forming is the accepted theory of the solar system. Our books on astronomy too often present this theory in such sort that it seems only a successor of Ptolemy's; and the impression is conveyed that, like Ptolemy's, it may be one day superseded by some other theory. This is quite enough for the paradoxist. If a new theory is to replace the one now accepted, why should not he be the new Copernicus? He starts upon the road without a tithe of the knowledge that old Ptolemy possessed, unaware of the difficulties which Ptolemy met and dealt with—free, therefore, because of his perfect ignorance, to form theories at which Ptolemy would have smiled. He has probably heard of the
centrics and eccentrics scribbled o'erCycle and epicycle, orb in orb,which disfigured the theories of the ancients; but he is quite unconscious that every one of those scribblings had a real meaning, each being intended to account for some observed peculiarity of planetary motion, which must be accounted for by any theory which is to claim acceptance. In this happy unconsciousness that there are any peculiarities requiring explanation, knowing nothing of the strange paths which the planets are seen to follow on the heavenly vault,
Their wand'ring course now high, now low, then hid,Progressive, retrograde, or standing still,he placidly puts forward—and presently very vehemently urges—a theory which accounts for none of these things.
It has often seemed to me that a large part of the mischief—for let it be remembered that the published errors of the paradoxist are indicative of much unpublished misapprehension—arises from the undeserved contempt with which our books of astronomy too often treat the labours of Ptolemy, Tycho Brahe, and others who advocated erroneous theories. If the simple truth were told, that the theory of Ptolemy was a masterpiece of ingenuity and that it was worked out by his followers in a way which merits the highest possible praise, while the theory of Tycho Brahe was placed in reality on a sounder basis than that of Copernicus, and accounted as well and as simply for observed appearances, the student would begin to realise the noble nature of the problem which those great astronomers dealt with. And again, if stress were laid upon the fact that Tycho Brahe devoted years upon years of his life to secure such observations of the planets as might settle the questions at issue, the student would learn something of the spirit in which the true lover of science proceeds.
It seems to me, also, that far too little is said about the kind of work by which Kepler and Newton finally established the accepted theories. There is a strange charm in the history of those twenty years of Kepler's life during which he was analysing the observations made by Tycho Brahe. Surrounded with domestic trials and anxieties, which might well have claimed his whole attention, tried grievously by ill-health and bodily anguish, he laboured all those years upon erroneous theories. The very worst of these had infinitely more evidence in its favour than the best which the paradoxists have brought forth. There was not one of those theories which nine out of ten of his scientific contemporaries would not have accepted ungrudgingly. Yet he wrought these theories one after another to their own disproof. Nineteen of them he tried and rejected—the twentieth was the true theory of the solar system. Perhaps nothing in the whole history of astronomy affords a nobler lesson to the student of science—unless, indeed, it be the calm philosophy with which Newton for eighteen years suffered the theory of the universe to remain in abeyance, because faulty measurements of the earth prevented his calculations from agreeing with observed facts. But, as Professor Tyndall has well remarked—and the paradoxist should lay the lesson well to heart—'Newton's action in this matter was the normal action of the scientific mind. If it were otherwise—if scientific men were not accustomed to demand verification, if they were satisfied with the imperfect while the perfect is attainable—their science, instead of being, as it is, a fortress of adamant, would be a house of clay, ill fitted to bear the buffetings of the theologic storms to which it has been from time to time, and is at present, exposed.'
The fame of Newton has proved to many paradoxists an irresistible attraction; it has been to these unfortunates as the candle to the fluttering moth. Circle-squaring, as we shall presently see, has had its attractions, nor have earth-fixing and earth-flattening been neglected; but attacking the law of gravitation has been the favourite work of paradoxists. Newton has been praised as surpassing the whole human race in genius; mathematicians and astronomers have agreed to laud him as unequalled; why should not Paradoxus displace him and be praised in like manner? It would be unfair, perhaps, to say that the paradoxist consciously argues thus. He doubtless in most instances convinces himself that he has really detected some flaw in the theory of gravitation. Yet it is impossible not to recognise, as the real motive of every paradox-monger, the desire to have that said of him which has been said of Newton: 'Genus humanum ingenio superavit.'
I remember a curious instance of this which occurred soon after the appearance of the comet of 1858. It chanced that, while that object was under discussion, reference was made to the action of a repulsive force exerted by the sun upon the matter of the comet's tail. On this, some one addressed a long letter to a Glasgow newspaper, announcing that he had long ago proved that the sun's attraction alone is insufficient to account for the planetary motions. His reasoning was amazingly simple. If the sun's attraction is powerful enough to keep the outer planets in their course, it must be too powerful for Venus and Mercury close by the sun; if it only just suffices to keep these in their course, it cannot possibly be powerful enough to restrain the outer planets. The writer of this letter said that he had been very badly treated by scientific bodies. He had announced his discovery to the Royal Astronomical Society, the Royal Society, the Imperial Academy at Paris, and other scientific bodies; but they had one and all refused to listen to him. He had forsaken or neglected his trade for several years in order to give attention to the new and (as he thought) the true theory of the universe. He complained in a specially bitter manner of the unfavourable comments which men of science had made upon his views in private letters addressed to him in reply to his communications.
There is something melancholy even in what is most ridiculous in cases of this sort. The simplicity which supposes that considerations so obvious as those adduced could escape the scrutiny, not of Newton only, but of all who have followed in the same track during two centuries, is certainly stupendous; nor can one fail to smile at seeing a difficulty, such as might naturally suggest itself to a beginner, and such as half-a-dozen words from an expert would clear up, regarded gravely as a discovery calculated to make its author famous for all time. Yet, when one considers the probable consequences of the blunder to the unhappy enthusiast, and perchance to his family, it is difficult not to feel a sense of pity, quite apart from that pity allied to contempt which is excited by his mistake. A few words added to the account of Newton's theory, which the paradoxist had probably read in some astronomical treatise, would have prevented all this mischief. Indeed, this difficulty, which, as we have said, is a natural one, should be dealt with and removed in any account of the planetary system intended for beginners. The simple statement that the outer planets move more slowly than the inner, and so require a smaller force to keep them in their course, would have sufficed, not, perhaps, altogether to remove the difficulty, but to show the beginner where the explanation was to be looked for.
It was in connection with this subject of gravitation that one of the most well-meaning of the paradoxists—the late Mr. James Reddie—came under Professor De Morgan's criticism. Mr. Reddie was something more than well-meaning. He was earnestly desirous of advancing the interests of science, as well as of defending religion from what he mistakenly supposed to be the dangerous teachings of the Newtonians. He founded for these purposes the Victoria Institute, of which society he was the secretary from the time of its institution until his decease, some years since; and, probably, many who declined to join that society because of the Anti-Newtonian proclivities of its secretary, were unaware that to that secretary the institute owed its existence.
It so chanced that I had myself a good deal of correspondence with Mr. Reddie (who was, however, personally unknown to me). This correspondence served to throw quite a new light on the mental habitudes and ways of thinking of the honest paradoxist. I believe that Professor De Morgan hardly gave Mr. Reddie credit for the perfect honesty which he really possessed. It may have been that a clear reasoner like De Morgan could hardly (despite his wide experience) appreciate the confusion of mind which is the normal characteristic of the paradoxist. But certainly the very candid way in which Mr. Reddie admitted, in the correspondence above named, that he had not known some facts and had misunderstood others, afforded to my mind the most satisfactory proofs of his straightforwardness.
It may be instructive to consider a few of those paradoxes of Mr. Reddie's which Professor De Morgan found chief occasion to pulverise.
In a letter to the Astronomer-Royal Mr. Reddie announced that he was about to write 'a paper intended to be hereafter published, elaborating more minutely and discussing more rigidly than before the glaring fallacies, dating from the time of Newton, relating to the motion of the moon.' He proceeded to 'indicate the nature of the issues he intended to raise.' He had discovered that the moon does not, as a matter of fact, go round the earth at the rate of 2288 miles an hour, as astronomers say, but follows an undulatory path round the sun at a rate varying between 65,000 and 70,000 miles an hour; because, while the moon seems to go round the earth, the latter is travelling onwards at the rate of 67,500 miles an hour round the sun. Of course he was quite right in his facts, and quite wrong in his inferences; as the Astronomer-Royal pointed out in a brief letter, closing with the remark that, 'as a very closely occupied man,' Mr. Airy could 'not enter further into the matter.' But further Mr. Reddie persisted in going, though he received no more letters from Greenwich. His reply to Sir G. Airy contained, in fact, matter enough for a small pamphlet.
Now here was certainly an amazing fact. A well-known astronomical relation, which astronomers have over and over again described and explained, is treated as though it were something which had throughout all ages escaped attention. It is not here the failure to comprehend the rationale of a simple explanation which is startling, but the notion that an obvious fact had been wholly overlooked.
Of like nature was the mistake which brought Mr. Reddie more especially under Professor De Morgan's notice. It is known that the sun, carrying with him his family of planets, is speeding swiftly through space—his velocity being estimated as probably not falling short of 20,000 miles per hour. It follows, of course, that the real paths of the planets in space are not closed curves, but spirals of different orders. How, then, can the theory of Copernicus be right, according to which the planets circle in closed orbits round the sun? Here was Mr. Reddie's difficulty; and like the other, it appeared to his mind as a great discovery. He was no whit concerned by the thought that astronomers ought surely to have noticed the difficulty before. It did not seem in the least wonderful that he, lightly reading a book or two of popular astronomy, should discover that which Laplace, the Herschels, Leverrier, Airy, Adams, and a host of others, who have given their whole lives to astronomy, had failed to notice. Accordingly, Mr. Reddie forwarded to the British Association (in session at Newcastle) a paper controverting the theory of the sun's motion. The paper was declined with thanks by that bigoted body 'as opposed to Newtonian astronomy.' 'That paper I published,' says Mr. Reddie, 'in September 1863, with an appendix, in both thoroughly exhibiting the illogical reasoning and absurdities involved in the theory; and with what result? The members of Section A of the British Association, and Fellows of the Royal Society and of the Royal Astronomical Society, to whom I sent copies of my paper, were, without exception, dumb.' Professor De Morgan, however, having occasion to examine Mr. Reddie's publications some time after, was in no sort dumb, but in very plain and definite terms exhibited their absurdity. After all, however, the real absurdity consisted, not in the statements which Mr. Reddie made, nor even in the conclusions which he drew from them, but in the astounding simplicity which could suppose that astronomers were unaware of the facts which their own labours had revealed.
In my correspondence with Mr. Reddie I recognised the real source of the amazing self-complacency displayed by the true paradoxist. The very insufficiency of the knowledge which a paradoxist possesses of his subject, affords the measure of his estimate of the care with which other men have studied that subject. Because the paradoxist is ready to pronounce an opinion about matters he has not studied, it does not seem strange to him that Newton and his followers should be equally ready to discuss subjects they had not inquired into.
Another very remarkable instance was afforded by Mr. Reddie's treatment of the subject of comets. And here, by the way, I shall quote a remark made by Sir John Herschel soon after the appearance of the comet of 1861. 'I have received letters,' he said, 'about the comets of the last few years, enough to make one's hair stand on end at the absurdity of the theories they propose, and at the ignorance of the commonest laws of optics, of motion, of heat, and of general physics, they betray in their writers.' In the present instance, the correspondence showed that the paradoxist supposed the parabolic paths of some comets to be regarded by astronomers as analogous to the parabolic paths traversed by projectiles. He expressed considerable astonishment when I informed him that, in the first place, projectiles do not travel on truly parabolic paths; and secondly, that in all respects their motion differs essentially from that which astronomers ascribe to comets. These last move more and more quickly until they reach what is called the vertex of the parabola (the point of such a path which lies nearest to the sun): projectiles, on the contrary, move more and more slowly as they approach the corresponding point of their path; and further, the comet first approaches and then recedes from the centre of attraction—the projectile first recedes from and then approaches the attracting centre.
The earth-flatteners form a considerable section of the paradoxical family. They experienced a practical rebuff, a few years since, which should to some degree have shaken their faith in the present chief of their order. To do this chief justice, he is probably far less confident about the flatness of the earth than any of his disciples. Under the assumed name of Parallax he visited most of the chief towns of England, propounding what he calls his system of zetetic astronomy. Why he should call himself Parallax it would be hard to say; unless it be that the verb from which the word is derived signifies primarily to shift about or dodge, and secondarily to alter a little, especially for the worse. His employment of the word zetetic is less doubtful, as he claims for his system that it alone is founded on the true seeking out of Nature's secrets.
The experimental basis of the theory of Parallax is mainly this: Having betaken himself to a part of the Bedford Canal, where there is an uninterrupted water-line of about six miles, he tested the water surface for signs of curvature, and (as he said) found none.
It chanced, unfortunately, that a disciple—Mr. John Hampden, of Swindon—accepted the narrative of this observation in an unquestioning spirit; and was so confident that the Bedford Canal has a truly plane surface, that he wagered five hundred pounds on his opinion, challenging the believers in the earth's rotundity to repeat the experiment. The challenge was accepted by Mr. Wallace, the eminent naturalist; and the result may be anticipated. Three boats were to be moored in a line, three miles or so between each. Each carried a mast of given length. If, when the summits of the first and last masts were seen in a line through a telescope, the summit of the middle mast was not found to be above the line, then Mr. Hampden was to receive five hundred pounds from Mr. Wallace. If, on the contrary, the top of the middle mast was found, as the accepted theory said it should be, to be several feet above the line joining the tops of the two outer masts, then Mr. Hampden was to lose the five hundred pounds he had so rashly ventured. Everything was conducted in accordance with the arrangements agreed upon. The editor of a well-known sporting paper acted as stakeholder, and unprejudiced umpires were to decide as to what actually was seen through the telescope. It need scarcely be said that the accepted theory held its own, and that Mr. Hampden lost his money. He scarcely bore the loss with so good a grace as was to have been expected from a philosopher merely desirous of ascertaining the truth. His wrath was not expended on Parallax, whom he might have suspected of having led him astray; nor does he seem to have been angry with himself, as would have seemed natural. All his anger was reserved for those who still continued to believe in the earth's rotundity. Whether he believed that the Bedford water had risen under the middle boat to oblige Mr. Wallace, or how it came to pass that his own chosen experiment had failed him, does not appear.
The subsequent history of this matter has been unpleasant. It illustrates, unfortunately but too well, the mischief which may ensue from the tricks of those who make a trade of paradox—tricks which would be scarce possible, however, if text-books of science were more carefully written, and by those only who are really acquainted with the subject of which they treat.
The book which originally led to Mr. Hampden's misfortunes, and has misled not a few, ought to have deceived none. I have already mentioned the statement on which Parallax (whose true name is Rowbotham) rested his theory. Of course, if that statement had been true—if he had, with his eye a few inches from the surface of the water of the Bedford Canal, seen an object close to the surface six miles from him—there manifestly would have been something wrong in the accepted theory about the earth's rotundity. So, also, if a writer were to announce a new theory of gravity, stating as the basis of his theory that a heavy missile which he had thrown into the air had gone upwards on a serpentine course to the moon, any one who accepted the statement would be logically bound to admit at least that the fact described was inconsistent with the accepted theory. But no one would accept such a statement; and no one should have accepted Mr. Rowbotham's statement.
His statement was believed, however, and perhaps is still believed by many. Twenty years ago De Morgan wrote that 'the founder of the zetetic astronomy gained great praise from provincial newspapers for his ingenuity in proving that the earth is a flat, surrounded by ice,' with the north polar ice in the middle. 'Some of the journals rather incline to this view; but the "Leicester Advertiser" thinks that the statement "would seem to invalidate some of the most important conclusions of modern astronomy;" while the "Norfolk Herald" is clear that "there must be great error on one side or the other." … The fact is worth noting that from 1849–1857 arguments on the roundness or flatness of the earth did itinerate. I have no doubt they did much good, for very few persons have any distinct idea of the evidence for the rotundity of the earth. The "Blackburn Standard" and "Preston Guardian" (December 12 and 16, 1849) unite in stating that the lecturer ran away from his second lecture at Burnley, having been rather too hard pressed, at the end of his first lecture, to explain why the large hull of a ship disappeared before the masts. The persons present and waiting for the second lecture assuaged their disappointment by concluding that the lecturer had slipped off the ice edge of his flat disc, and that he would not be seen again till he peeped up on the opposite side.' … 'The zetetic system,' proceeds De Morgan, 'still lives in lectures and books; as it ought to do, for there is no way of teaching a truth comparable to opposition. The last I heard of it was in lectures at Plymouth, in October 1864. Since this time a prospectus has been issued of a work entitled "The Earth not a Globe;" but whether it has been published I do not know.'
The book was published soon after the above was written, and De Morgan gives the following quaint account of it: 'August 28, 1865. The zetetic astronomy has come into my hands. When in 1851 I went to see the Great Exhibition I heard an organ played by a performer who seemed very desirous of exhibiting one particular stop. "What do you think of that stop?" I was asked. "That depends on the name of it," said I "Oh! what can the name of it have to do with the sound? 'that which we call a rose,' etc." "The name has everything to do with it: if it be a flute stop I think it very harsh; but if it be a railway-whistle stop, I think it very sweet." So as to this book: if it be childish, it is clever; if it be mannish, it is unusually foolish. The flat earth floating tremulously on the sea; the sun moving always over the flat, giving day when near enough, and night when too far off; the self-luminous moon, with a semi-transparent invisible moon created to give her an eclipse now and then; the new law of perspective, by which the vanishing of the hull before the masts, usually thought to prove the earth globular, really proves it flat;—all these and other things are well fitted to form exercises for a person who is learning the elements of astronomy. The manner in which the sun dips into the sea, especially in tropical climates, upsets the whole. Mungo Park, I think, gives an African hypothesis which explains phenomena better than this. The sun dips into the Western ocean, and the people there cut him in pieces, fry him in a pan, and then join him together again; take him round the under way, and set him up in the East. I hope this book will be read, and that many will be puzzled by it; for there are many whose notions of astronomy deserve no better fate. There is no subject on which there is so little accurate conception as on that of the motions of the heavenly bodies.51 The author, though confident in the extreme, neither impeaches the honesty of those whose opinion he assails, nor allots them any future inconvenience: in these points he is worthy to live on a globe and to rotate in twenty-four hours.'