Полная версия
Эти гениальные птицы
То же самое верно и для гнездовых паразитов, таких как кукушки, черноголовые утки и медоуказчики, которые откладывают яйца в чужие гнезда и таким образом избавляют себя от необходимости заботиться о потомстве. Их птенцы также вылупляются с относительно большим мозгом, так что им «хватает ума» выбросить хозяйских детенышей из гнезда (кукушки) или убить их (медоуказчики), а также рано покидают гнездо с мозгами, достаточно развитыми для самостоятельной жизни, – но впоследствии значительного роста не происходит.
Почему же природа наделила гнездовых паразитов маленькими мозгами? Луи Лефевр называет две возможные причины. Возможно, дело в том, что только на раннем этапе их птенцам нужно опередить в развитии птенцов хозяйского вида, поэтому в ходе эволюции они развили более мелкий мозг. Или это является следствием того, что гнездовые паразиты освободили этот орган от всех функций, связанных с воспитанием потомства. «Мы, люди, прекрасно знаем, сколько требуется сил, чтобы вырастить и воспитать ребенка, – говорит Лефевр. – Только представьте, сколько мозгового потенциала на перерабатывание информации у нас бы высвободилось, если бы мы подкидывали своих детей шимпанзе».
80 % птенцовых видов птиц, таких как синицы, гаички, вóроны, ворóны, сойки и многие другие, рождаются совершенно беспомощными, с маленьким мозгом, но после рождения он значительно вырастает (как и у людей) – отчасти благодаря родительской заботе.
Другими словами, тот, кто дольше сидит в гнезде, в итоге становится более «мозговитым», чем его скороспелые сородичи[15].
РАЗМЕР МОЗГА также связан с тем, как долго после оперения птенцы остаются вместе с родителями для обучения: чем дольше длится ювенильный период, тем крупнее мозг – вероятно, потому, что птице нужно многому научиться и сохранить все это в памяти. У большинства умных видов животных детство длится довольно долго.
Как-то летом я наблюдала за взрослением пяти птенцов большой голубой цапли на мертвом дубе у десятиакрового пруда в орнитологическом заповеднике Сапсакер Вудс. Раньше мне удавалось лишь мельком заглянуть в гнездовую жизнь странствующих дроздов, сиалий и крапивников. Но на этот раз исследователи из Корнеллской орнитологической лаборатории установили над гнездом веб-камеру, и эта новая технология позволила вблизи увидеть удивительный, почти интимный процесс взросления маленьких цапель.
Я всегда любила этих ширококрылых, торжественно неспешных в полете птиц. Но я и представить себе не могла, насколько умилительны и забавны их птенцы! Как и полмиллиона других зрителей из 166 стран мира, я стала фанатом голубых цапель.
Наше сплоченное виртуальное сообщество ежедневно припадало к экранам компьютеров и горячо обсуждало увиденное в чате под неусыпным надзором модератора. Целые школьные классы каждое утро смотрели «новости» из гнезда. Один человек, страдающий хроническим болевым синдромом, написал, что только наблюдение за птенцами позволяет ему не сойти с ума.
Мы вместе следили за тем, как в конце апреля вылуплялись крошечные птенцы; как, сонные и беспомощные, они прятались в родительском пухе от проливных дождей и атак филинов; как они глотали отрыгнутую родителями рыбу и после еды впадали в ступор; как они своими крошечными клювами клевали все вокруг: ветки, камеру, жуков, своих родителей, друг друга, тренируя точные и мощные удары клювами, которые впоследствии понадобятся им для охоты за рыбой. Мы искренне переживали за пятого птенца, который вылупился последним и был значительно меньше по размеру и менее активным в кормлении, чем остальные:
● «Пятый не получил еды. Ужасно беспокоюсь».
● «Посмотрите, как раздраженно Пятый щелкает клювом! Похоже, ему не хватило еды!»
● Модератор: «С пятым все в порядке. Просьба к наблюдателям: давайте не устраивать истерик».
Но такова уж человеческая природа – мы любим разыгрывать драмы на пустом месте.
● «Пятый напоминает мне соседского мальчика из “Смерти коммивояжера”. В первом действии он – худой, забитый очкарик, а во втором – успешный адвокат, защищающий дела в Верховном суде».
Ночью я смотрела, как они спят. Некоторые птицы могут длительное время обходиться без сна. Например, в период полярного лета дутыши не спят по несколько недель, используя светлое время для активной деятельности. Но большинство видов, в том числе цапли, похоже, разделяют нашу потребность в регулярном сне, который, по всей видимости, оказывает важнейшее влияние на их умственное развитие.
У птиц такие же циклы медленного и быстрого сна, как и у людей. И ученые считают, что эти два режима мозговой активности играют критическую роль в развитии большого мозга – как у них, так и у нас. (Скорее всего, такое сходство стало результатом конвергентной эволюции; у других близких к птицам позвоночных, таких как рептилии, наблюдаются совершенно другие режимы сна.) Как правило, стадия быстрого сна у птиц длится не дольше десяти секунд и повторяется до нескольких сотен раз, тогда как у людей эта фаза продолжается от десяти минут до часа и повторяется за ночь всего несколько раз. Как у млекопитающих, так и у птиц быстрый сон предположительно имеет важнейшее значение для раннего развития мозга. У новорожденных млекопитающих, например у котят, стадия быстрого сна намного продолжительнее, чем у взрослых кошек. У человеческих детей быстрый сон может составлять до половины всего времени сна, тогда как у взрослых – всего 20 %. Исследования показали такое же увеличенное количество быстрого сна у совят по сравнению со взрослыми совами.
Возможно, это касается и цапель.
Как и у нас, продолжительность глубокого медленного сна у птиц напрямую зависит от того, как долго те до этого бодрствовали. Кроме того, у птиц и у людей в наиболее глубокий сон погружаются те области мозга, которые были наиболее активны в предшествующий период бодрствования, – еще одно сходство, возникшее в результате конвергентной эволюции. Это открытие недавно было сделано международной группой ученых во главе с Нильсом Раттенборгом из Института орнитологии общества Макса Планка. Исследователи воспользовались уникальной способностью птиц, которой не обладают люди, – а именно их умением спать с одним открытым глазом, ограничивая медленный сон только одной половиной мозга и бодрствуя другой. Это очень полезное умение, когда вам нужно поспать во время длительного перелета или когда есть опасность подвергнуться нападению хищника (это позволило матери-цапле спасти жизнь своих птенцов, когда однажды темной апрельской ночью перед рассветом гнездо атаковал виргинский филин). Исследователи создали импровизированный кинотеатр, взяли нескольких голубей, закрыли им один глаз и показали многосерийный документальный фильм Дэвида Эттенборо «Жизнь птиц». После восьмичасового просмотра фильма одним глазом птицам дали возможность заснуть. Сканирование их мозговой активности показало, что в самый глубокий сон погрузился зрительный участок мозга, связанный с тем глазом, которым они смотрели фильм.
«Такой локализованный эффект сна, наблюдаемый у людей и птиц, предполагает, что медленный сон может играть важную роль в поддержании оптимального функционирования мозга, – говорит Раттенборг. – В целом параллели между сном у млекопитающих и птиц предполагают интригующую возможность того, что их независимая эволюция может быть связана с той функцией, которую выполняют эти режимы сна для развития крупного, сложного мозга у тех и других».
Мне нравится сама идея, что столь далеко стоящие друг от друга существа, как люди и птицы, независимо друг от друга развили такой большой мозг, потому что они одинаково спят.
Каждое утро я включала компьютер и словно читала новую главу в романе о достижении цаплями половозрелости. В мае и июне потихоньку покрывающиеся перьями птенцы неуклюже копошились в гнезде, пока мать и отец не покладая крыльев пытались накормить своих быстрорастущих чад, выросших за семь недель с 70 г (при вылуплении) до двух с лишним килограммов. Как и человеческие дети в переноске, птенцы с любопытством глазели на все, что двигалось вокруг: на самолеты, гусей, пчел, родителей, ловящих рыбу в озере и рассчитывающих угол нападения. Наконец, они оперились и окрепли. Первый вылет с быстрой посадкой – неуклюжим переваливанием через край гнезда и неумелым маханием длинными крыльями – вызвал в нашем виртуальном сообществе бурю восторга. («Четвертый был похож на маленького ребенка, который стоит на бортике бассейна и боится нырнуть», «Не могу оторваться от этого зрелища!») Затем началось упорное обучение искусству рыбной ловли на мелководье: выжидание на отмели, сотни, как правило, безуспешных ударов клювом по воде. И все это под бдительным оком родителей, которые с наступлением сумерек зазывали своих чад обратно в гнездо и угощали лягушками и рыбой.
Разительный контраст с выводковыми ржанками, чьи птенцы сразу после вылупления – едва успевают просохнуть перья – встают на ноги и бегут. Но таков эволюционный компромисс: либо полная функциональность при рождении, либо более развитый мозг во взрослом возрасте.
МИГРАЦИЯ – еще один фактор, определяющий размер птичьего мозга, и еще один компромисс. У перелетных птиц мозг по размеру меньше, чем у их оседлых сородичей. В этом есть смысл, поскольку много путешествующие птицы не могут позволить себе крупный мозг, который медленно развивается и потребляет много энергии. Более того, по словам Даниэля Соля из Центра прикладных исследований в области экологии и лесного хозяйства в Испании, врожденное, запрограммированное поведение полезнее для перелетных видов, которые перемещаются между совершенно разными средами обитания, чем приобретенное и новаторское. Какой смысл тратить массу умственных ресурсов на сбор данных в одном месте, если эта информация не пригодится в другом?
Но и тут не без сюрприза: оказывается, даже в пределах одного вида размер мозга – или, по крайней мере, некоторых его частей – может заметно варьироваться. Владимир Правосудов[16] из Университета Невады и его команда сравнили десять популяций черношапочных гаичек и обнаружили, что те, кто живет в более суровых климатических условиях на Аляске, в Миннесоте и штате Мэн, обладают бóльшим по размеру гиппокампом – участком, играющим особую роль в пространственном обучении и памяти, – с бóльшим количеством нейронов, чем их сородичи из Айовы и Канзаса. Такое же различие было обнаружено у гаичек Гамбела – небольших родственников черношапочных гаичек, населяющих горы на западе США. Гаички, живущие в более холодных и снежных высокогорных районах, превосходят по размеру гиппокампа своих сородичей, живущих у подножия гор. Например, у обитателей высочайших вершин Сьерра-Невады гиппокамп содержит в два раза больше нейронов, чем у тех, кто живет всего на 600 м ниже (и они также демонстрируют лучшие способности в решении различных задач). И это логично. В более суровых условиях птицам необходимо запасать больше корма и запоминать, где они его спрятали. В более мягком климате, где корм доступен круглый год, это умение не столь критично.
Независимо от размера в гиппокампе этих запасливых птиц происходит нечто удивительное: в нем регулярно рождаются новые нейроны, которые добавляются к старым или заменяют их. Причина такого нейрогенеза остается загадкой. Возможно, это обеспечивает мозг новыми нейронами, когда ему требуется выучить или запомнить что-то новое, или же позволяет новой запоминаемой информации не смешиваться со старой. Как отмечает Правосудов: «Гаички делают новые кладовые, находят старые запасы и перепрятывают их каждый день, особенно зимой, и, чтобы держать в уме всю эту информацию, им нужна прекрасная память». Вторая гипотеза о «предотвращении интерференций» предполагает, что птицам требуется разделять отдельные события, поэтому каждая единица информации хранится в отдельном наборе нейронов. Команда Правосудова установила, что у гаичек из популяций, живущих в более суровых климатических условиях (и потому вынужденных запасать больше еды), более высокие темпы нейрогенеза.
В любом случае такое обновление нейронов навсегда изменило наши представления о мозге позвоночных, в том числе и нашем собственном. Оказывается, мы не рождаемся с готовым набором мозговых клеток, который не обновляется на протяжении жизни, как некогда считали ученые. В человеческом гиппокампе также происходит постоянное рождение новых нейронов и отмирание старых. Именно эта способность к обновлению нейронов и связей между ними «дает нашему мозгу возможность меняться и учиться со скоростью от нескольких миллисекунд и минут до нескольких недель», говорит Правосудов. У прячущих еду птиц, таких как гаички, подобная пластичность позволяет удовлетворять потребности в значительной памяти в пределах относительно ограниченного объема мозга.
ГЕНИАЛЬНЫЙ ПО СВОЕЙ ПРОСТОТЕ способ измерения когнитивной мощности мозга – подсчет нейронов – опроверг общепринятое представление о том, что большой мозг у позвоночных – млекопитающих и птиц – всегда лучше и умнее. В 2014 г. бразильский нейробиолог Сюзана Херкулано-Хузель и ее коллеги подсчитали число нейронов и других клеток в мозге 11 видов попугаев и 14 видов певчих птиц. Несмотря на свои скромные размеры, говорит Херкулано-Хузель, «головной мозг птиц содержит на удивление большое число нейронов, с очень высокой плотностью сродни той, что мы находим у приматов. А у врановых и попугаев эти цифры даже выше».
Многое зависит от того, где эти нейроны расположены. Команда Херкулано-Хузель установила, что в мозге слонов в три раза больше нейронов, чем в человеческом (в среднем 257 млрд против наших усредненных 86 млрд). Но 98 % из них находятся в мозжечке, где они задействованы в управлении таким сложным органом, как хобот, который достигает веса более 90 кг и обладает уникальными сенсорными и двигательными способностями. В то же время кора слоновьего мозга, по размеру вдвое больше нашей, содержит всего треть от числа нейронов в нашей коре. По словам Херкулано-Хузель, когнитивные способности определяются не общим количеством нейронов в мозге, а их количеством в коре – или ее эквиваленте у птиц. Например, у попугая ара почти 80 % нейронов находятся в коркоподобной части мозга и всего 20 % в мозжечке. У млекопитающих это соотношение наблюдается с точностью до наоборот.
Иными словами, ученые считают, что сосредоточение большого количества нейронов в коркоподобной структуре мозга у попугаев и певчих птиц, особенно врановых, предполагает «большой вычислительный потенциал», который, в свою очередь, может объяснить поведенческую и когнитивную сложность, присущую этим семействам птиц.
РАЗМЕР БЫЛ не единственной причиной уничижительного отношения к птичьему мозгу; другой была его анатомия. Крохотный мозг птицы считался примитивным по своему строению, чуть сложнее, чем у рептилий. «На птиц смотрели как на роботов – симпатичных, но способных лишь на стереотипные действия», – говорит Харви Картен, нейробиолог из Калифорнийского университета в Сан-Диего, посвятивший изучению птичьего мозга почти полвека.
Такая точка зрения сформировалась в конце XIX столетия, главным образом под влиянием Людвига Эдингера, немецкого биолога и основоположника сравнительной анатомии нервной системы. Эдингер считал, что эволюция носит линейный и прогрессивный характер. Как и Аристотель, он ранжировал всех живых существ на «естественной лестнице» (scala naturae) от низших и менее развитых, таких как рыбы и рептилии, до высших и более развитых – разумеется, с человеком на вершине. Каждый вид на более высокой ступени более развит и совершенен по сравнению с видом на предыдущей ступени. Эдингер считал, что так же ступенчато эволюционировал и мозг, идя по пути добавления новых структур поверх старых. Новые, более «умные» части мозга высших животных накладывались поверх старых, менее «умных» структур мозга низших животных наподобие геологических пластов, и такое постепенное увеличение размера и сложности привело от примитивного мозга рыб и рептилий к вершине эволюции – человеческому мозгу.
Считалось, что древний мозг содержит организованные в кластеры нейроны, которые отвечают за инстинктивное поведение, такое как питание, секс, выращивание потомства и двигательная координация. Высший же мозг состоит из шести слоев клеток, обволакивающих древний мозг, и служит вместилищем высшего сознания. У людей эта новая мозговая оболочка стала настолько огромной, что ее пришлось сложить в складки, чтобы уместить внутри черепа.
Таким образом, Эдингер считал, что у птиц, говоря современным языком, попросту нет «аппаратного обеспечения», необходимого для генерации сложного поведения. Вместо слоистой и складчатой коры «верхнего» мозга у них только гладкие «нижние» структуры, почти полностью состоящие из древних рептилоидных скоплений нейронов. Следовательно, они живут только инстинктами, демонстрируя жестко запрограммированное, врожденное поведение, и физически неспособны на проявление интеллекта более высокого уровня.
Названия, данные Эдингером структурам мозга, отражают его ошибочные представления. Для обозначения структур птичьего мозга он использовал префиксы палео- («древний») и архи- («архаичный»), а мозга млекопитающих – префикс нео- («новый»). «Старый» птичий мозг был назван палеоэнцефалоном (сейчас эту структуру называют базальными ядрами), а «новый» мозг млекопитающих – неоэнцефалоном (сейчас это новая кора). Эта терминология подразумевала, что птичий мозг более примитивен, чем мозг млекопитающих, и сильно подорвала наши представления об умственных способностях птиц. Слова играют важную роль. Мы даем названия видам, и это влияет на наши представления о них. Названия вроде paleostriatum primitivum в отношении районов птичьего мозга укрепили представления о зачаточном его состоянии и заглушили интерес к исследованию умственных способностей птиц.
Таким образом, силлогизм был следующим:
● Интеллект берет начало в новой коре (неокортексе).
● У птиц нет новой коры.
● Значит, у птиц фактически нет интеллекта.
ВЗГЛЯДЫ ЭДИНГЕРА продержались больше века, вплоть до 1990-х. Однако уже в конце 1960-х гг. ученые, такие как Харви Картен, всерьез заинтересовались мозгом птиц и млекопитающих. Картен и его коллеги внимательно изучили и сравнили мозговые клетки, соединения между ними, молекулы и гены у различных видов животных. Они также исследовали процесс эмбрионального развития, чтобы определить, в какой последовательности развиваются мозговые структуры, и изучили нейронные связи и сети, чтобы понять, как связаны между собой различные части мозга.
То, что они обнаружили, перевернуло представления Эдингера с ног на голову. Птичий мозг вовсе не примитивная, недоразвитая версия мозга млекопитающих. Птицы развиваются своим, отдельным от млекопитающих эволюционным путем на протяжении более чем 300 млн лет, поэтому неудивительно, что их мозг выглядит совершенно иначе. В действительности у них есть своя развитая коркоподобная нервная система, отвечающая за сложное поведение. Эта система, в орнитологической терминологии называемая дорсальным желудочковым гребнем, развивается из той же области эмбрионального мозга, что и кора у млекопитающих, – из так называемой мантии мозга (паллиума), но затем созревает в совершенно иную по строению анатомическую структуру.
Примерно в то же время лабораторные эксперименты обнаружили у птиц свидетельства сложного поведения: оказалось, что голуби способны распознавать картины с изображением человека, а также различать людей, изображенных в обнаженном виде и в одежде. Африканские серые попугаи показали свое умение складывать числа и классифицировать предметы. А представители семейства врановых отличились своей способностью выслеживать и запоминать местонахождение чужих тайников с едой.
НО НЕСМОТРЯ НА эти открытия, предубеждения относительно птиц сохранялись не в последнюю очередь из-за данных Эдингером неудачных определений отделов их мозга.
Наконец, в 2004–2005 гг. анатомическая репутация птичьего мозга была восстановлена. Международная группа из 29 экспертов по нейроанатомии, возглавляемая двумя нейробиологами – Эрихом Джарвисом из Университета Дьюка и Антоном Рейнером из Университета Теннесси, опубликовала серию научных работ, где подвергла пересмотру устаревшую терминологию Эдингера. (Это было нелегкой задачей. По словам одного из участников, добиться консенсуса между экспертами по птичьему мозгу было ничуть не проще, чем пасти зайцев.) Как бы то ни было, консорциум по номенклатуре головного мозга птиц не только переименовал отдельные части птичьего мозга в свете современных представлений, но и провел параллели между его структурами и соответствующими структурами мозга млекопитающих, чтобы орнитологи и зоологи могли говорить на одном языке.
«Кора составляет около 75 % нашего переднего мозга, – говорит Джарвис, – и то же самое верно для птиц, особенно для певчих видов и попугаев. У них, условно говоря, столько же “коры”, сколько и у нас. Просто она организована не так, как наша». У млекопитающих нервные клетки неокортекса упакованы в шесть слоев, как фанера, тогда как в коркоподобной структуре птиц нейроны сгруппированы в кластеры, как дольки в чесночной головке. Но сами нервные клетки мало чем отличаются: они также способны на молниеносную и повторную активацию и способны функционировать в сложной, гибкой и инновационной манере. Кроме того, для передачи сигналов между ними используются те же химические нейромедиаторы. И, пожалуй, самое важное: в мозге птиц и млекопитающих есть схожие нейронные сети, или пути, связывающие различные участки мозга, что, как оказывается, является ключевым условием сложного поведения. Другими словами, интеллект во многом зависит от соединений между отдельными клетками и участками мозга. А в этом отношении птичий мозг не так уж сильно отличается от нашего.
Айрин Пепперберг использует компьютерную аналогию. Если мозг млекопитающих можно сравнить с мощным персональным компьютером, то мозг птиц – с гаджетом Apple. Методы обработки информации разные, но результаты очень похожи.
Дело в том, говорит Эрих Джарвис, что генерирование сложных моделей поведения не может сводиться к одному способу: «Млекопитающее делают это одним способом. Птицы другим».
Рассмотрим функционирование оперативной памяти – это одна из когнитивных способностей, которую продемонстрировала новокаледонская ворона по кличке 007 при решении описанной ранее восьмишаговой головоломки с палками, камнями и коробками. Оперативная память, которую также называют блокнотной, представляет собой способность запоминать информацию на короткое время, необходимое для выполнения задачи. Например, с помощью нее мы воспроизводим телефонный номер, пока набираем его на аппарате. И с помощью нее ворона 007 помнила о своей конечной цели – достать кусок мяса из последнего ящика, – пока выполняла предыдущие семь шагов, необходимых для ее достижения.
Судя по всему, птицы и люди используют кратковременную память аналогичным образом. В нашем мозге отвечающий за нее процесс происходит в многослойной коре. Но раз у птиц нет коры головного мозга, где же они хранят временную информацию?
Чтобы узнать это, Андреас Нидер и его коллеги из Института нейробиологии Тюбингенского университета научили четырех черных ворон играть в версию игры «Мемо» (где игрокам нужно по памяти найти карточки с парными изображениями). Они показывали воронам случайную картинку, которую те должны были запомнить, а затем выбрать из четырех предложенных вариантов такую же, стукнув по ней клювом. За правильные ответы они получали личинку мучного хрущака или кусочек птичьего корма. Во время выполнения воронами задания исследователи отслеживали электрическую активность их мозга.
Вороны справлялись с заданием на удивление легко и умело. Что же при этом происходило в их головах? Когда птицы видели исходную картинку и искали ее среди четырех вариантов, в их области мозга, известной как nidopallium caudolaterale (это аналог префронтальной коры мозга у приматов), активизировался кластер из примерно двух сотен клеток и оставался активным, пока птица искала совпадение. Это тот же механизм, который позволяет людям держать в уме нужную информацию во время выполнения задачи.
Оказалось, что кратковременная память может существовать и без многослойной коры головного мозга. «У людей и птиц она различается только в связи с наличием у первых языкового компонента, – говорит нейробиолог Онур Гюнтюркюн из Рурского университета в Бохуме, Германия. – Нейронные процессы генерации кратковременной памяти кажутся одинаковыми у обоих видов».
НАКОНЕЦ-ТО ПТИЦЫ приобрели заслуженное уважение. У них относительно небольшой мозг – но отнюдь не ограниченный ум.
Таким образом, вопрос сегодня стоит не «Умны ли птицы?», а «Почему они так умны?». Особенно если принять во внимание ограничения, налагаемые полетом на размер мозга. Какие эволюционные силы сыграли роль в формировании птичьего интеллекта?
Теорий много, но две из них преобладают. Одна утверждает, что развитию мозга и когнитивных способностей птиц способствовали экологические факторы, особенно связанные с кормодобыванием: как отыскать пищу в разные сезоны года, особенно в холода? Как запомнить, где спрятаны запасы семян? Как добраться до труднодоступной еды? В целом считается, что животные, обитающие в более суровой или непредсказуемой среде, приобретают более продвинутые когнитивные способности, включая лучшие навыки решения проблем и бóльшую открытость к исследованию нового.