bannerbanner
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 8

ЛЕФЕВР ПРИЗНАЕТ, что размер птичьего мозга и даже его основных частей служит довольно ненадежным мерилом интеллекта. «Например, у кулика-воробья (разновидность песочника) довольно большой мозг относительно размера тела, – говорит он. – Но все, на что он способен, так это бегать по кромке прибоя от волн и ловить беспозвоночных».

Уже давно известно, что большой мозг – не обязательно признак большого ума. У коров головной мозг в сто раз больше, чем у мышей, но это не делает их умнее. А животные с крошечным мозгом могут обладать удивительными умственными способностями. Например, пчела с мозгом меньше миллиграмма ориентируется в пространстве наравне с млекопитающими, а дрозофилы способны учиться друг у друга. По всей видимости, гораздо бóльшую роль играет коэффициент энцефализации – соотношение массы мозга и массы тела, хотя взаимосвязь между этим показателем и интеллектом до сих пор не доказана.

«Дело не только в размере, по крайней мере у большинства животных, – говорит Лефевр. – Разве размер мозга напрямую влияет на его способность к обработке информации? Вовсе нет».

СЕЙЧАС СПОСОБНОСТЬ ПТИЦ к инновационному поведению признана многими учеными как достоверный показатель их когнитивного уровня. Но если эта способность не зависит от размера мозга, что же тогда является определяющим фактором? Что отличает самых сообразительных и находчивых пернатых от остальных? В чем разница между изобретательным мозгом барбадосских снегирей и таким же по размеру мозгом явно недалеких чернолицых тиарисов?

«Для этого нам нужно проникнуть в их головы, – говорит Лефевр. – До сих пор внимание исследователей было сосредоточено на объеме мозга или отдельных его частей. Но когнитивные способности и инновационное поведение определяются тем, что происходит на уровне нейронов».

Как тут не вспомнить совет, который дал известному американскому нейробиологу Эрику Канделю, награжденному Нобелевской премией за исследование физиологических – нейронных – основ памяти, его наставник Гарри Грундфест. Когда Кандель еще студентом пришел в его лабораторию и сказал, что хочет изучать высшие нервные функции в свете фрейдистской теории, Грундфест ответил: «Если ты хочешь понять, как функционирует мозг, ты должен использовать упрощенный подход – исследовать по одной клетке за раз». «И он оказался прав», – признает Кандель.

Как и многие другие исследователи птичьей когниции, Лефевр перешел на «нейронный уровень», надеясь показать, как обучение и решение задач у птиц отражается в активности их головного мозга на уровне нейронов и соединений между ними, известных как синапсы. «Я считаю, что способность животного к гибкому, инновационному поведению зависит от того, что происходит в его синапсах», – настаивает Лефевр.

Что же делает птицу такой умной и изобретательной, как барбадосский снегирь или новокаледонская ворона? И действительно ли чернолицые тиарисы и кагу так просты, как кажутся?

«Мы стараемся использовать разносторонний подход, – говорит Лефевр. – Мы начинаем с полевых исследований – основы основ, со скрупулезного наблюдения за интересующими нас видами. Чтобы понять птиц, нужно знать, как они ведут себя в дикой природе. Затем мы пытаемся проникнуть в их голову. Для этого мы берем весь массив полевых наблюдений за их поведением, анализируем их инновационность, проводим эксперименты в лабораторных условиях и, наконец, ищем способы связать то, что мы видим в природе, с тем, что мы обнаружили на уровне генов и клеток».

Такого рода амбициозные научные усилия, представляющие собой замечательную совокупность из полевых наблюдений за поведением и экологией, когнитивных исследований в лабораторных условиях и глубокого изучения птичьего мозга с помощью передового научного оборудования, – это единственный способ разгадать загадки птичьего интеллекта.


Глава вторая

С высоты птичьего полета

Пересматриваем наши представления о птичьем мозге

Однажды во время лыжного кросса по лесам в горах Адирондак я остановилась на небольшой поляне, чтобы перекусить. Земля была покрыта толстым слоем снега, холод пробирал до костей. Я быстро вытащила из фольги бутерброд с арахисовым маслом – и в то же мгновение краем глаза уловила какое-то движение и услышала знакомое «зиии-зиии». Подняв глаза, я увидела на ветке на краю полянки черношапочную гаичку (Poecile atricapillus), родственницу тех самых синиц, которые воруют сливки из бутылок. Потом я заметила еще одну, и еще. Вскоре к моим ногам слетелась целая стайка птиц. Я положила крошки на палец, и одна из птичек смело вспорхнула с ветки и схватила их. Спустя несколько мгновений другой маленький наглец уселся мне на руку и принялся есть прямо с ладони.

Гаички – не самые звездные представители птичьего царства. Но они очень милые. Маленькие пушистые шарики с буровато-серым оперением и черной шапочкой на макушке. Короткий хвостик. Непропорционально большая голова, как у инопланетянина. У них нет ни изящной грациозности певчих птиц и ворон, ни их солидности и хитроумия. Но они славятся своей прытью у кормушки и акробатическим мастерством. Как писал орнитолог Эдвард Форбуш: «Однажды я видел, как гаичка в погоне за насекомым рухнула с ветки спиной назад, поймала насекомое, совершила в воздухе сальто и как ни в чем не бывало приземлилась на нижнюю ветку».

Между тем гаички – не просто крошечные сгустки задора и ловкости. Ничуть не меньше они поражают своей сообразительностью, любопытством, оппортунистическим поведением и памятью. По словам Форбуша, «их птичье мастерство выше всяких похвал». По шкале Луи Лефевра семейство синицевых может похвастаться птичьим IQ на уровне дятлов.

Недавно ученые проанализировали высокие тонкие свисты и сложные горловые звуки синиц-гаичек – все их «ци-ци-ци», «твинь-твинь», «чикади-ди» и шипящие «шти-шти» – и пришли к выводу, что это одна из самых сложных и точных коммуникативных систем среди сухопутных животных. Крис Темплтон и его коллеги обнаружили, что синицы-гаички используют эти возгласы как язык со своим синтаксисом, позволяющим генерировать неограниченное количество уникальных видов криков. С помощью одних они сообщают сородичам о своем местонахождении или наличии вкусной еды; с помощью других предупреждают об угрозе – рассказывают о породе хищника и степени его опасности. Высокий, пронзительный крик «си-и-ит» или отрывистый «си-си-си» сигнализируют о воздушной угрозе, такой как сорокопут или полосатый ястреб. Характерный синичий «чикади-ди-ди» сообщает о неподвижном хищнике, который сидит высоко на дереве и выслеживает добычу, например как североамериканская совка. Количество отрывистых «ди-ди-ди» указывает на размер зверя и, следовательно, на степень угрозы. Чем больше «ди», тем меньше хищник и, следовательно, тем опаснее. Это может показаться нелогичным, но мелкие и проворные животные, способные отлично маневрировать, представляют собой гораздо бóльшую угрозу, чем крупные и неповоротливые. Поэтому воробьиный сыч может получить четыре «ди», а виргинский филин – всего два. Эти крики также служат призывом для других птиц собраться и вместе дать отпор врагу, причем масштаб коллективной обороны соизмеряется с величиной угрозы. Коммуникативная система синиц настолько надежна, что к их предупреждениям прислушиваются и другие виды птиц.

Проезжая на лыжах по лесу, я слышу редкие «чикади». За мной внимательно наблюдают, оценивают мои размеры и степень моей опасности? Судя по всему, меня воспринимают как нечто большое, неуклюжее и абсолютно безобидное – мое присутствие вызывает не более чем ленивую перекличку.

Как правило, синицы-гаички не боятся людей. Смелые и любознательные, как барбадосские снегири, они обладают «врожденной самоуверенностью» и в пределах своей родной территории исследуют всё и вся, включая присутствующих там Homo sapiens. Во время охотничьего сезона они собираются вокруг охотничьих домиков, чтобы при малейшей возможности полакомиться салом с туш убитых животных. Зачастую они первыми из всех птиц обнаруживают кормушки и даже не боятся есть с рук. Им нет равных в умении находить новые источники пищи. Крис Темплтон однажды видел, как синица пила нектар из висящей кормушки для колибри. Зимой они едят пчел, спящих летучих мышей, живицу и мертвую рыбу.

Когда в 1970-е на американский Запад были занесены орехотворки, чтобы остановить нашествие завезенного из Европы пятнистого василька, синицы мгновенно воспользовались новой возможностью. Темплтон обнаружил, что птицы быстро научились находить семенные головки васильков, где было больше всего личинок орехотворок – необыкновенно питательной еды. Самое удивительное, что они не порхали над растениями в поисках самых богатых личинками головок, а находили их почти мгновенно, в полете, по каким-то известным им одним признакам. Они срывали свой приз и уносили его на дерево, где спокойно выковыривали личинок.

Темплтон был поражен: «Каким образом им удается моментально, в полете, оценить цветок и понять, если ли там личинки?» Впечатляет и то, как быстро птицы открыли абсолютно новый источник пищи – экзотическое насекомое, живущее на экзотическом виде растения, совсем недавно занесенном в их среду обитания.

Синицы также обладают феноменальной памятью. Они могут спрятать семена и другую еду в тысячах укромных мест – и спустя полгода найти все свои заначки!

И все это они делают с помощью мозга размером вдвое больше горошины.

НЕДАВНО на заросшей сосновой аллее возле своего дома я нашла кипенно-белый череп синички. Я взяла его в руку – крошечный, невероятно легкий и тонкий, как яичная скорлупка. Острый, как игла, клюв между двумя впадинами глазниц. Сзади две выпуклости из полупрозрачной кости, под которыми находился мозг. Взрослая синица весит 11–12 г, ее мозг – всего 0,60–0,70 г. Как такой миниатюрный мозг может выполнять такие сложные ментальные задачи?

Очевидно, что функциональность мозга определяется не только его размером. Но даже в том, что касается размера, птицы подвергаются необоснованному уничижению. Вопреки распространенному мнению, у многих птиц гораздо бóльший по величине головной мозг, чем можно было бы ожидать при их размере тела. Это результат того же уникального процесса, который привел к развитию огромного мозга Homo sapiens – хотя мы и птицы шли к этому совершенно разными эволюционными путями.

Масса птичьего мозга варьирует от 0,13 г у кубинского изумрудного колибри до 46,19 г у императорского пингвина. Крохотный по сравнению с мозгом кашалота весом 7,8 кг, но не такой уж незначительный, если взять других животных сходного размера. Мозг карликовой курицы-бентамки весит почти в десять раз больше, чем мозг аналогичной по массе ящерицы. Если взять соотношение массы мозга и массы тела, то по этому показателю птицы приближаются к млекопитающим.

Наш мозг весит около 1360 г при средней массе тела 63 кг. У волков и овец с примерно такой же средней массой тела, что и у нас, мозг примерно в семь раз легче. По этому параметру новокаледонские вороны близки к нам и снова дерзко нарушают все закономерности: при массе тела чуть больше 225 г они обладают мозгом массой 7,5 г. Аналогичного размера мозг и у маленьких обезьянок, таких как мартышки и игрунки, а у галаго мозг в два раза меньше (все эти животные по массе тела сравнимы с воронами).

А как насчет синиц? Их мозг в два раза больше, чем у других птиц такого же весового диапазона, таких как мухоловки и ласточки.

Другими словами, многие виды птиц могут похвастаться удивительно большим мозгом для своего размера тела, который – как и мозг Homo sapiens – подпадает под научное определение «увеличенного».

НА ПРОТЯЖЕНИИ НЕСКОЛЬКИХ СТОЛЕТИЙ мы считали, что в ходе эволюции птичий мозг по разумной причине уменьшился в размере, чтобы птицы могли летать: чтобы полевой лунь безмятежно парил в небе, чтобы дымчатый иглохвост мог практически жить в воздухе, а синицы выделывали воздушные акробатические номера, меняя направление полета менее чем за 30 миллисекунд.

Головной мозг – тяжелый по массе и чрезвычайно ресурсоемкий орган, уступающий по энергозатратности только сердцу. Крошечные нейроны в процессе создания и поддержания работы потребляют примерно в десять раз больше энергии относительно своего размера, чем другие клетки тела, поэтому обеспечение их развития и функционирования – дорогостоящее удовольствие. Неудивительно, что природа сократила у птиц объем серого вещества, думали мы. «Иронично, что за свою способность летать, которой мы так восхищаемся у птиц, те заплатили эволюционную цену в виде более низкого интеллекта по сравнению с млекопитающими», – писал известный натуралист Питер Маттиссен. Иначе говоря, птицы предпочли решать проблемы, не полагаясь на собственный ум, а улетая от них, считали мы.

Полет – действительно трудоемкое дело. Птица размером с голубя во время полета расходует примерно в десять раз больше энергии, чем в состоянии покоя. У маленьких птичек, таких как вьюрок, короткие перелеты с частым маханием крыльями отнимают энергии почти в 30 раз больше. (Для сравнения: расход энергии при плавании у водоплавающих птиц, таких как утка, превышает энергозатраты в состоянии покоя всего в три-четыре раза.) Чтобы удовлетворить ограничительным условиям полета, природа действительно постаралась облегчить нагрузку для птиц, наделив их максимально прочным, но легким скелетом. Некоторые кости слились, некоторые вообще были устранены. Тяжелым, зубастым челюстям пришел на замену легкий клюв, состоящий в основном из кератина. Кости крыльев стали воздушными, почти полыми, но укрепились изнутри каркасом из костных перекладин, чтобы предотвратить возможные деформации. Другие кости, наоборот, стали более плотными, даже плотнее, чем у млекопитающих. Это касается костей ног и мощной грудной клетки, к которой крепятся крылья. (При движении вниз птичье крыло производит достаточно силы, чтобы поднять в воздух двойную массу тела птицы.) Изучив гены, задействованные в формировании скелетной системы птиц, биологи обнаружили в два раза больше генов, отвечающих за реконструкцию и резорбцию костей, чем у млекопитающих. Бóльшая часть птичьих костей полые и тонкостенные, но поразительно жесткие и прочные. Иногда это приводит к парадоксальным результатам: у фрегата с размахом крыльев более двух метров скелет весит меньше, чем оперение.

Эволюция нашла и другие способы упростить или полностью устранить ненужные части тела. У птиц нет мочевого пузыря[9]. Печень сократилась до полуграмма. Сердце у птиц, как и у млекопитающих, четырехкамерное и с двумя желудочками, но очень миниатюрное и бьется несравнимо быстрее (от 500 до 1000 ударов в минуту у черношапочных гаичек по сравнению с 78 ударами у человека)[10]. Их дыхательная система пропорционально намного больше, чем у млекопитающих, и составляет одну пятую от объема тела по сравнению с одной двадцатой у последних, и она намного эффективнее. Их «сквозные» легкие, заключенные в жесткий каркас туловища, всегда сохраняют одинаковый объем (в отличие от легких млекопитающих, которые расширяются и сокращаются внутри подвижной грудной клетки) и соединены со сложной сетью воздушных мешков, в которых находится воздух за пределами легких. В отличие от большинства рептильных родственников, птицы оставили себе только один яичник с левой стороны; правый был утерян в процессе эволюции[11]. Половые органы птиц увеличиваются только в сезон размножения; в течение большей части года их семенники, яичники и маточные трубы уменьшаются до минимальных размеров.

Сокращение птичьего генома также может быть следствием адаптации к полету. Птицы обладают самым маленьким геномом среди всех амниот – так называется группа животных, включая рептилий и млекопитающих, которые первоначально откладывали яйца на суше. Геном типичного млекопитающего содержит от одного до восьми миллиардов пар оснований, тогда как у птиц эта цифра колеблется на уровне миллиарда, что получилось в результате значительного уменьшения количества повторяющихся фрагментов и множества делеций, то есть утрат участков ДНК в ходе эволюции. Вероятно, сокращение генома позволило предкам птиц гораздо быстрее корректировать свои гены, адаптируясь к сложности полета.

ЭТА ЭКОНОМИЧНАЯ во всех аспектах структура сформировалась в результате уникального эволюционного процесса, который начался еще у динозавров и привел к их превращению в современных птиц.

Томас Гексли был одним из первых, кто проследил этот эволюционный путь, что, кстати говоря, нисколько не улучшило имидж птиц в глазах людей и не добавило им интеллекта. Гексли – «старика с желтым лицом, квадратной челюстью и пронзительными маленькими карими глазами», как описал его ученик Герберт Уэллс, – считали «цепным псом Дарвина». В его распоряжении был довольно ограниченный ископаемый материал, но, тщательно изучив его, он сумел увидеть в динозаврах признаки птиц, а в древней, только что тогда описанной птице – так называемом археоптериксе возрастом 150 млн лет – признаки динозавров. «Если бы задняя четверть, от подвздошной кости до пальцев ног невылупившегося цыпленка вдруг могла многократно увеличиться в размерах, окостенеть и окаменеть, – писал Гексли, – это обеспечило бы нас последним переходным звеном между птицами и рептилиями; в их характере нет ничего, что могло бы помешать нам отнести их к динозаврам».

Конечно, Гексли был прав. Птицы произошли от динозавров в Юрский период от 150 до 160 млн лет назад. На самом деле, как говорит палеонтолог Стивен Брусатте из Эдинбургского университета: «Мы не нашли четкого разграничения между “динозаврами” и “птицами”. Динозавры превратились в птиц не за один день; преобразования начались очень рано, и птичье тело формировалось постепенно, по частям на протяжении более чем ста миллионов лет непрерывной эволюции».

Также в птицах есть многое от рептилий: такие же глаза-бусинки и резкие отрывистые движения; у малайского калао (птицы-носорога) такие же крылья, как у птеродактилей[12]; такая же манера у странствующего дрозда неподвижно замирать в настороженной готовности, улавливая внешне звуки, как это часто делают ящерицы, причем с таким же отсутствующим и ничего не выражающим взглядом. Посмотрите на большую голубую цаплю, которая своими медленными, тяжелыми взмахами крыльев, змеиным изгибом изящной шеи и хриплым клекотом напоминает динозавра. Но у нас не умещается в голове, что крошечные молниеносные синицы тоже произошли от гигантских чудовищ, некогда бродивших по нашей планете[13].

ОТДАЛЕННЫЙ УГОЛОК земли на северо-востоке Китая может рассказать нам историю этого потрясающего превращения. Во время раннего мелового периода этот регион под названием Жэхэ, расположенный в современных китайских провинциях Ляонин, Хэбэй и Внутренняя Монголия, покрылся толстым слоем вулканического пепла, в результате чего там образовались богатейшие залежи окаменелостей.

Двадцать лет назад я посетила одно из мест раскопок возле крохотной деревеньки Сихетун в провинции Ляонин. Местные жители совсем недавно разворошили слоистые формации, и всюду валялись окаменелые останки древних рыб, пресноводных ракообразных и личинок мух, отпечатанные на тонких, хрупких пластинах алевролита. Я приехала, чтобы задокументировать открытие, сделанное одним местным фермером и археологом-любителем годом ранее. Раскапывая скальную породу, он наткнулся на окаменелые останки маленького существа в классической позе смерти, с запрокинутой назад головой и торчащим вверх жестким хвостом. Оно напоминало небольшую двуногую ящерицу высотой около 30 см. Необычным было то, что вдоль ее спины шла густая грива из волосоподобных нитей.

Это существо, названное «китайским пернатым драконом», относится к динозаврам-тероподам из рода Sinosauropterix и представляет собой ключевое звено между птицами и динозаврами. (Тероподы, что означает «звероногие», были разнообразной группой двуногих динозавров, варьировавших в размерах от гигантских ящеров, таких как Tirannosaurus rex и Deinonychus, до крошечных троодонтидов высотой около 30 см.) Приехавший вместе со мной фотограф работал по десять часов в день, пытаясь запечатлеть на пленке едва заметные нитчатые прожилки – «протоперья», отпечатанные на камне в районе хвоста динозавра.

Раньше перья считались уникальной особенностью современного птичьего царства. Но окаменелости из Жэхэ опровергли эту точку зрения. В последние два десятилетия в формациях Жэхэ было найдено множество ископаемых останков динозавров возрастом 120–130 млн лет с перьями всех видов – от рудиментарных щетинок и пуха до полноценных маховых перьев. Известно, что распространенная в те времена группа пернатых динозавров, известных как эуманирапторы, один из представителей которой – Velociraptor – прославился в фильме «Парк Юрского периода», испытывала различные режимы полета, такие как перепрыгивание с дерева на дерево, парашютирование, планирование и передвижение по типу «прыжок-полет», и видимо, так и появились птицы.

Динозавры породили современных цапель и синичек благодаря неумолимому процессу устойчивой миниатюризации – подобно тому, как уменьшалась Алиса, попавшая в Страну чудес. Более 200 млн лет назад динозавры начали быстро диверсифицироваться в размерах, заполняя новые экологические ниши. Но из всех эволюционных линий динозавров только одна – линия предков современных птиц – продолжила интенсивно изменяться. На протяжении 50 млн лет эти тероподы устойчиво уменьшались в размерах, сократив массу тела со 163 кг до менее чем одного килограмма. Практически все уменьшилось в пропорциональном отношении. Миниатюрное и легкое тело позволяло этим тероподам осваивать новые пищевые ниши и спасаться от хищников, забираясь на деревья, планируя, совершая большие прыжки, а затем и улетая. Новые адаптивные особенности развивались у них значительно быстрее, чем у других динозавров. Небольшой размер, эволюционная гибкость и, разумеется, новые особенности (эффективная теплоизоляция благодаря развитому оперению, способность летать и кормиться на дальних расстояниях) позволили птичьим предкам пережить катастрофические события, приведшие к гибели множество других видов динозавров, и впоследствии помогли стать одной из наиболее успешных групп наземных позвоночных на планете.

Но как насчет мозга? Он уменьшился так же сильно, как тело?

Вовсе нет. Динозавры, от которых произошли птицы, развили так называемый увеличенный мозг еще до того, как научились летать. Увеличение коснулось прежде всего зрительного центра, управлявшего более крупными глазами и более острым зрением, необходимыми для того, чтобы избежать столкновений при прыжках с дерева на дерево, а также областей мозга, отвечающих за обработку звуковой информации и двигательную координацию. Протоптичий мозг эволюционировал, чтобы справиться с чрезвычайно высоким уровнем неврологических и мышечно-координационных требований. Другими словами, птичий мозг, как и перья, появился еще до того, как сформировались сами птицы.

Но как можно сохранить большой мозг, если все остальные части вашего тела стремительно уменьшаются? Птицам удалось добиться этого тем же способом, что и нам: сохранив детскую голову и лицо. Этот эволюционный процесс называется педоморфозом (буквально «формированием по детскому типу») и заключается в сохранении детских черт во взрослом возрасте.

Недавно международная группа ученых сравнила черепа птиц, тероподов и представителей отряда крокодиловых и обнаружила, что у большинства динозавров и крокодилов форма черепа значительно меняется в процессе созревания[14]. «У нептицеподобных динозавров морды и зубастые челюсти вырастали в размерах существенно больше, чем мозг, – объясняет Архат Абжанов из Гарвардского университета, участвовавший в этом исследовании. – Наиболее наглядно это проявляется на примере зауроподов и стегозавров с крохотным мозгом относительно их огромных тел». В отличие от этого как у примитивных, так и у современных птиц при взрослении череп сохраняет свою ювенильную форму, оставляя место для больших глаз и увеличенного мозга. «Когда мы смотрим на птиц, – говорит Абжанов, – фактически мы видим детенышей динозавров».

Удивительно, но мы, люди, пошли таким же эволюционным путем. Мы – своего рода Питеры Пэны: у нас большая голова, плоское лицо, маленькая челюсть и неравномерный волосяной покров, как у детенышей приматов. Педоморфоз стал одним из факторов, позволивших нам, как и птицам, стать обладателями крупного мозга.

НО НЕ ВСЕ ПТИЦЫ могут похвастаться сравнительно большим мозгом. Как и в любой группе животных, среди них есть свои умники и тупицы. Напомним, что у американской вороны и куропатки с одинаковой массой тела мозг весит соответственно 7–10 г и всего 1,9 г. У мелких птиц, таких как большой пестрый дятел и перепел, эти цифры составляют 2,7 г и 0,73 г.

Размеры мозга связаны в том числе с репродуктивной стратегией. 20 % выводковых видов птиц, чьи птенцы вылупляются с открытыми глазами и способны через один-два дня покинуть гнездо, рождаются с более крупным мозгом, чем птенцовые птицы. У последних птенцы рождаются голыми, слепыми и беспомощными и остаются в гнезде, пока не достигнут фактически размеров своих родителей и полностью не оперятся. Птенцы выводковых птиц, таких как кулики, сразу готовы к самостоятельной жизни. При вылуплении они уже обладают довольно большим мозгом, благодаря чему уже в возрасте нескольких дней могут бегать на короткие дистанции и добывать насекомых, однако в дальнейшем их мозг увеличивается очень мало, так что в итоге уступает в размерах мозгу птенцовых птиц.

На страницу:
4 из 8