
Полная версия
Appletons' Popular Science Monthly, April 1899
The Atlantic Slope.– The Atlantic slope of the United States is described in the New Jersey State Geological Survey's report on the Physical Geography of the State as "a fairly distinct geographical province. Its eastern boundary is the sea; its western boundary on the north is the divide between the drainage flowing southeast to the sea and that flowing northeast to the St. Lawrence. Farther south its western limit is the divide between the streams flowing east to the Atlantic and those flowing west to the Ohio and Mississippi Rivers." The line between it and the geographical province next west follows the watershed of the Appalachian system of mountains. It is divided, according to elevations, into several subprovinces, all of which elongate in a direction roughly parallel to the shore. Next to the coast there is usually a belt of lowland, few or many miles wide, called the Coastal Plain. Inland from the Coastal Plain is an intermediate height, between the Coastal Plain to the east and the mountains to the west, known in the South as the Piedmont Plateau. The mountainous part of the slope constitutes the third province, known as the Appalachian Zone. The Atlantic slope may be divided into two sections – a northern and a southern – in which the Coastal Plain is narrow and wide respectively. These two sections meet in New Jersey, where the division runs from the Raritan River, just below New Brunswick, to Trenton. South of this line the Coastal Plain expands, and all considerable elevations recede correspondingly from the shore. These three subprovinces are especially well shown in the southern section of the Atlantic slope. They are less well developed in the northern section, and even where the topography is comparable the underlying rock structure is different. In New Jersey a fourth belt, the Triassic formation, is interposed between the Coastal Plain and the Highlands corresponding to the Piedmont Plateau. North of New Jersey the Coastal Plain has little development, though Long Island and some small areas farther east and northeast are to be looked upon as parts of it.
American Fresh-water Pearls.– The facts cited by Mr. George F. Kunz in his paper, published in the Report of the United States Fish Commission, on the Fresh-water Pearls and Pearl Fisheries of the United States, give considerable importance to this feature of our natural history. The mound explorations attest that fresh-water pearls were gathered and used by the prehistoric peoples of the country "to an extent that is astonishing. On the hearths of some of these mounds in Ohio the pearls have been found, not by hundreds, but by thousands and even by bushels – now, of course, damaged and half decomposed by centuries of burial and by the heat of superficial fires." The narratives of the early Spanish explorers make several mentions of pearls in the possession of the Indians. For a considerable period after the first explorations, however, American pearls attracted but little attention, and "for some two centuries the Unios [or 'fresh-water mussels'] lived and multiplied in the rivers and streams, unmolested by either the native tribes that had used them for food, or by the pioneers of the new race that had not yet learned of their hidden treasures." Within recent years the gathering of Unio pearls has attained such importance as to start economical problems warranting and even demanding careful and detailed inquiry. The first really important discovery of Unio pearls was made near Paterson, N. J., in 1857, in the form of the "queen pearl" of fine luster, weighing ninety-three grains, which was sold to Eugénie, wife of Napoleon III, for twenty-five hundred dollars, and is now worth four times that amount. As a result the Unios at Notch Brook, where it was found, were gathered by the million and destroyed. Within a year fully fifteen thousand dollars' worth of pearls were sent to the New York market. Then the shipments gradually fell off. Some of the best American pearls that were next found were at Waynesville, Ohio, where Mr. Israel H. Harris formed an exceedingly fine collection. It contained more than two thousand specimens, weighing more than as many grains. Among them were one button-shaped on the back and weighing thirty-eight grains, several almost transparent pink ones, and one showing where the pearl had grown almost entirely through the Unio. In 1889 a number of magnificently colored pearls were found at different places in the creeks and rivers of Wisconsin, of which more than ten thousand dollars' worth were sent to New York within three months. These discoveries led to immense activity in pearl hunting through all the streams of the region, and in three or four seasons the shells were nearly exhausted. The pearl fisheries of this State have produced at least two hundred and fifty thousand dollars' worth of pearls since 1889. Another outbreak of the "pearl mania" occurred in Arkansas in 1897, and extended into the Indian Territory, Missouri, Georgia, and other States.
Distribution of Cereals in the United States.– To inquiries made preparatory to drawing up a report on the Distribution of Cereals in North America (Department of Agriculture, Biological Survey), Mr. C. S. Plumb received one thousand and thirty-three answers, eight hundred and ninety-seven of which came from the United States and the rest from the Canadian provinces. These reports showed that in many localities, particularly in the East and South, but little attention is paid to keeping varieties pure, and many farmers use mixed, unknown, or local varieties of ordinary merit for seed. In New England but little grain is grown from sowing, owing to the cheapness of Western grain, and wheat is rarely reported. Oats are now mostly sown from Western seed, and the resulting crop is mown for hay, while most of the corn is cut for green fodder or silage. On certain fine lowlands – as, for example, in the Connecticut Valley – oats, and more especially corn, are often grown for grain. While reports on most of the cereals were rendered from the lower austral zone, or the region south of the Appalachians and the old Missouri Compromise line, this region, except where it merges with the upper austral or the one north of it, is apparently outside the area of profitable cultivation of wheat and oats. In Louisiana and most of the other parts of the lower austral, except in northern Texas and Oklahoma, wheat is almost an unknown crop. The warm, moist climatic conditions here favor the development of fungous diseases to such a degree that the plants are usually ruined or greatly injured at an early stage of growth. In Florida, as a rule, cereals are rarely cultivated except on the uplands at the northern end of the State. In a general way, corn and wheat are most successfully grown in the upper austral zone, or central States, while oats are best and most productive in the transition zone (or northern and Lake States and the Dakotas), or along the border of the upper austral and transition. The gradual acclimation of varieties of cereals, through years of selection and cultivation, has gone so far, however, that some varieties are now much better adapted to one zone than to another.
Spanish Silkworm Gut.– The business of manufacturing silkworm gut in Spain is a considerable industry. The method of preparation is thus described in the Journal of the Society of Arts: After the silkworm grub has eaten enough mulberry leaves, and before it begins to spin, which is during the months of May and June, it is thrown into vinegar for several hours. The insect is killed and the substance which the grub, if alive, would have spun into a cocoon is drawn out from the dead worm into a much thicker and shorter silken thread, in which operation considerable dexterity and experience are required. Two thick threads from each grub are placed for about four hours in clear cold water, after which they are put for ten or fifteen minutes in a solution of some caustic. This loosens a fine outer skin on the threads, which is removed by the hands, the workman holding the threads in his teeth. The silk is then hung up to dry in a shady place, the sun rendering it brittle. In some parts of the country these silk guts are bleached with sulphur vapor, which makes them beautifully glossy and snow-white, while those naturally dried have a yellowish tint. The quality of the gut is decided according to the healthy condition of the worm, round indicating a good quality and flat an inferior one.
The Nests of Burrowing Bees.– Prof. John B. Smith, having explained to his section of the American Association a method which has been successfully applied, of taking casts in plaster of Paris of the homes of burrowing insects, with their branchings, to the depth of six feet, described some of the results of its application. Bees, of the genus Calletes, dig vertically to the depth of eighteen inches or more, then burrow horizontally from two to five inches farther, and construct a thin, parchmentlike cell of saliva, in which the egg is deposited, with pollen and honey for the food of the larva. They then start a new horizontal burrow a little distance from the first, and perhaps a third, but no more. The vertical tubes are then filled up, so that when the bees come to life they must burrow from six to twenty-four inches before they can reach the surface. Another genus makes a twisted burrow; another makes a vertical burrow that may be six feet deep. About a foot below the surface it sends off a lateral branch, and in this it excavates a chamber from one to two and a half inches in diameter. Tubes are sent down from this chamber, as many perhaps as from six to twenty together, and these are lined with clay to make them water-tight. This bee, when it begins its burrow, makes an oblique gallery from four to six inches long before it starts in the vertical direction, and all the dirt is carried through this oblique gallery. Then the insect continues the tube vertically upward to just below the surface, and makes a small concealed opening to it here, taking care to pile no sand near it. This is the regular entrance to the burrow.
MINOR PARAGRAPHSIn a report of an inspection of three French match factories, published as a British Parliamentary paper, Dr. T. Oliver records as his impressions and deductions that while until recently the match makers suffered severely from phosphorus poisoning, there is now apparently a reduction in the severe forms of the illness; that this reduction is attributable to greater care in the selection of the work people, to raising the age of admission into the factory, to medical examination on entrance, subsequent close supervision, and repeated dental examination; to personal cleanliness on the part of the workers; to early suspension on the appearance of symptoms of ill health; and to improved methods of manufacture. The French Government is furthering by all possible means new methods of manufacture in the hope of finding a safer one; and a match free from white phosphorus and still capable of striking anywhere is already manufactured.
A mechanical and engineering section is to be organized in the Franklin Institute, Philadelphia, to be devoted to the consideration of subjects bearing upon the mechanic arts and the engineering problems connected therewith. The growth of the various departments of this institution – which has been fitly termed a "democratic learned society," from the close affiliation in it of the men of the professions and the men of the workshops – by natural accretion, and the steadily growing demands for the extension of its educational work during the past decade, have increased the costs for maintenance and administration and have been the cause of a deficit in nearly every year. A movement is now on foot, approved by the board of managers, and directed by a special committee, to secure for it an endowment, toward which a number of subscriptions ranging from two hundred and fifty to twenty-five hundred dollars have already been received.
The earthquake which took place in Assam, June 12, 1897, was described by Mr. R. D. Oldham in the British Association as having been the most violent of which there is any record. The shock was sensible over an area of 1,750,000 square miles, and if it had occurred in England, not a house would have been left standing between Manchester and London. Landslips on an unprecedented scale were produced, a number of lakes were formed, and mountain peaks were moved vertically and horizontally. Monuments of solid stone and forest trees were broken across. Bridges were overthrown, displaced, and in some places thrust bodily up to a height of about twenty feet, and the rails on the railroads were twisted and bent. Earth fissures were formed over an area larger than the United Kingdom, and sand rents, from which sand and water were forced in solid streams to a height of three or four feet above the ground, were opened "in incalculable numbers." The loss of life was comparatively small, as the earthquake occurred about five o'clock in the afternoon, and the damage done was reduced by the fact that there were no large cities within the area of greatest violence; but in extent and capacity of destruction, as distinguished from destruction actually accomplished, this earthquake surpassed any of which there was historical mention, not even excepting the great earthquake of Lisbon in 1755.
The first section of the electric railway up the Jungfrau, which is intended to reach the top of the mountain, was opened about the first of October, 1898. The line starts from the Little Scheidegg station of the existing Wengern Alp Railway, 6,770 feet above the sea, and ascends the mountain masses from the north side, passing the Eiger Glacier, Eiger Wand, Eismeer, and Jungfraujoch stations, to Lift, 13,430 feet, whence the ascent is completed by elevator to the summit, 13,670 feet. The road starts on a gradient of ten per cent, which is increased to twenty per cent about halfway to the Eiger Glacier station, and to twenty-five per cent, the steepest, after passing that station. There are about 85 yards in tunnel on the section now opened, but beyond the Eiger Glacier the road will not touch the surface except at the stations. About 250 yards of the long tunnel have been excavated so far. The stations beyond Eiger Wand will be built within the rock, and will be furnished with restaurants and beds. At the Eiger Wand and Eismeer stations passengers will contemplate the view through windows or balconies from the inside; but at the Jungfraujoch station tourists will be able to go out and take sledges for the great Aletsch Glacier. The cars will accommodate forty passengers each, and the company expects to complete the railroad by 1904.
Alexander A. Lawes, civil engineer, of Sydney, Australia, suggests a plan of mechanical flight on beating wings as presenting advantages that transcend all other schemes. He believes that the amount of power required to operate wings and the difficulty in applying it are exaggerated beyond all measure. The wings or sustainers of the bird in flight, he urges, are held in the outstretched position without any exertion on its part; and many birds, like the albatross, sustain themselves for days at a stretch. "This constitutes its aërial support, and is analogous to the support derived by other animals from land and water." The sole work done by the bird is propulsion and elevation by the beating action of the wings. Mr. Adams's machine, which he does not say he has tried, is built in conformity to this principle, and its sails are modeled as nearly as possible in form and as to action with those of the bird. The aid of an air cylinder is further called in, through which a pressure is exerted balancing the wings. The wings are moved by treadles, and the author's picture of the aëronaut looks like a man riding an aërial bicycle.
Carborundum, a substance highly extolled by its manufacturers as an abrasive, is composed of carbon and silicon in atomic proportions – thirty parts by weight of carbon and seventy of silicon. It is represented as being next to the diamond in hardness and as cutting emery and corundum with ease, but as not as tough as the diamond. It is a little more than one and a fifth times the weight of sand, is infusible at the highest attainable heat, but is decomposed in the electric arc, and is insoluble in any of the ordinary solvents, water, oils, and acids, even hydrofluoric acid having no effect upon it. Pure carborundum is white. In the commercial manufacture the crystals are produced in many colors and shades, partly as the result of impurities and partly by surface oxidation. The prevailing colors are green, black, and blue. The color has no effect upon the hardness. Crude carborundum, as taken from the furnace, usually consists of large masses or aggregations of crystals, which are frequently very beautifully colored and of adamantine luster.
A peculiarity of Old English literary usage is pointed out by Prof. Dr. L. Kellner, of Vienna, as illustrated in a sentence like "the mob is ignorant, and they are often cruel." This is considered a bad solecism in modern English, but in Old and Middle English constructions of exactly the same kind are so often met with that it is impossible to account for them as slips and mistakes. They may be brought under several heads, as, Number (the same collective noun used as a singular and a plural); Case (the same verb or adjective governing the genitive and accusative, the genitive and dative, or the dative and accusative); Pronoun ("thou" and "ye" used in addressing the same person); Tense (past and perfect, or past and historical present used in the same breath); Mood (indicative and subjunctive used in the same clause). Finite verb and infinitive dependent on the same verb; simple and prepositional infinitives dependent on the same verb; infinitive and verbal noun used side by side; different prepositions dependent on the same verb, like Caxton's "He was eaten by bears and of lions"; direct and indirect speech alternating in the same clause. These facts, which are met with as late as 1611 (Bible, authorized version), point to the conclusion that what to us appears as a grammatical inconsistency was once considered a welcome break in the monotony of construction.
Mr. Fischer Sigwart is quoted in the Revue Scientifique as having studied the life of frogs for thirty years, and found that they are night wanderers, keeping comparatively quiet during the day and seeking their prey after dark. In the fall they leave their hunting grounds in the fields and woods and take refuge near swamps and ponds, passing the winter in the banks of rivers or the mud in the bottoms of ponds, whence they come out in the spring, when the process of reproduction begins. The frog is not sexually mature till it is four or five years old. The coupling process lasts from three to thirty days. Between its spring wakening and spawning the frog eats nothing except, perhaps, its own skin, which it moults periodically. After spawning, frogs leave the water and go to the fields and woods. They can be fed, when kept captive, upon insects and earthworms.
NOTESA relation has been discovered by Professor Dolbear and Carl A. and Edward A. Bessey between the chirping of crickets and the temperature, the chirps increasing as frequently as the temperature rises. The Besseys relate, in The American Naturalist, that when, one cool evening, a cricket was caught and brought into a warm room, it began in a few minutes to chirp nearly twice as rapidly as the out-of-door crickets, and that its rate very nearly conformed to the observed rate maintained other evenings out of doors under the same temperature conditions.
C. Drieberg, of Colombo, Ceylon, records, in Nature, a rainfall at Nedunkeni, in the northern province of Ceylon, December 15 and 16, 1897, of 31.76 inches in twenty-four hours. The highest previous records, as cited by him, are at Joyeuse, France, 31.17 inches in twenty-two hours; Genoa, 30 inches in twenty-six hours; on the hills above Bombay, 24 inches in one night; and on the Khasia Hills, India, 30 inches in each of five successive days. The average annual rainfall at Nedunkeni has been 64.70 inches, but in 1897 the total amount was 121.85 inches. The greatest annual rainfall is on the Khasia Hills, India, with 600 inches. The wettest station in Ceylon is Padupola, in the central province, with 230.85 inches as the mean of twenty-six years, but in 1897 the amount was 243.07 inches.
The Korean postage stamps are printed in the United States. As explained in the United States consular reports, they are of four denominations, and all alike except in color and denomination. Of the inscriptions, the characters on the top are ancient Chinese, and those at the bottom, having the same meaning, are Korean; the characters on the right are Korean and those on the left are Chinese, both giving the denominations, with the English translation just below the center of the stamp. The plum blossom in each corner is the royal flower of the present Ye dynasty, which has been in existence more than five hundred years, and the figures at the corners of the center piece represent the four spirits that stand at the corners of the earth and support it on their shoulders. The national emblem in the center is an ancient Chinese phallic device.
A paragraph in La Nature calls to mind that the year 1898 was the "jubilee" of the sea serpent, the first mention of a sight of the monster – whether fabulous or not is still undecided – having been made by the captain and officers of the British ship Dædalus in 1848. They said they saw it between the Cape of Good Hope and St. Helena, and that it was about six hundred feet long. Since then views of sea serpents have been reported nearly every year, but none has ever been caught or seen so near or for so long a time as to be positively identified. There are several creatures of the deep which, seen for an instant, might be mistaken with the aid of an excited imagination for a marine serpent; and it is not wholly impossible that some descendants of the gigantic saurians of old may still be living in the ocean undetected by science.
The results of a study of the winter food of the chickadee by Clarence M. Weed, of the New Hampshire College Agricultural Experiment Station, shows that more than half of it consists of insects, a very large proportion of which are taken in the form of eggs. Vegetation of various sorts made up a little less than a quarter of the food; but two thirds of this consisted of buds and bud scales that were accidentally introduced along with plant-lice eggs. These eggs made up more than one fifth of the entire food, and formed the most remarkable element of the bill of fare. The destruction of these eggs of plant lice is probably the most important service which the chickadee renders during its winter residence. Insect eggs of many other kinds were found in the food, among them those of the tent caterpillar and the fall cankerworm, and the larvæ of several kinds of moths, including those of the common apple worm.
The Merchants' Association of San Francisco has been trying the experiment of sprinkling a street with sea water, and finds that such water binds the dirt together between the paving stones, so that when it is dry no loose dust is formed to be raised by the wind; that sea water does not dry so quickly as fresh water, so that it has been claimed when salt water has been used that one load of it is equal to three loads of fresh water. The salt water which is deposited on the street absorbs moisture from the air during the night, whereby the street is thoroughly moist during the early morning, and has the appearance of having been freshly sprinkled.
The Tarahumare people, who live in the most inaccessible part of northern Mexico, were described by Dr. Krauss in the British Association as ignorant and primitive, and many still living in caves. What villages they have are at altitudes of about eight thousand feet above the sea level. They are a small and wiry people, with great powers of endurance. Their only food is pinoli, or maize, parched and ground. They have a peculiar drink, called teshuin, also produced from maize and manufactured with considerable ceremony, which tastes like a mixture of sour milk and turpentine. Their language is limited to about three hundred words. Their imperfect knowledge of numbers renders them unable to count beyond ten. Their religion seems to be a distorted and imperfect conception of Christian traditions, mixed with some of their own ideas and superstitions.