bannerbanner
Appletons' Popular Science Monthly, April 1899
Appletons' Popular Science Monthly, April 1899полная версия

Полная версия

Appletons' Popular Science Monthly, April 1899

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
15 из 17

From the greater lightness of the air and the higher velocity of its currents, it is evident that the materials it may carry and deposit will be somewhat different in composition and structure from those which are laid down in water. They are as a rule finer, they exhibit a different bedding, and are more capriciously placed. Mr. Johan August Udden has made a careful study of the subject, the results of which he publishes under the title of The Mechanical Composition of Wind Deposits, as the first number of the Augustana Library Series, at the Lutheran Augustana Book Concern, Rock Island, Ill.

The History Reader for Elementary Schools (The Macmillan Company, 60 cents), prepared by L. L. W. Wilson and arranged with special reference to holidays, contains readings for each month of the school year, classified according to different periods and phases of American history generally, so chosen that some important topic of the group shall bear a relation to the month in which it is to be read. The groups concern the Indians, the Discovery of America, Thanksgiving, Other Settlements (than those of Virginia and the Pilgrims), Dr. Franklin, Lincoln and Washington, the Revolution, Arbor Day, and Brave Sea Captains, etc., closing with articles in reference to Flag Day. The insertion of an article on the War with Spain seems premature. Public sentiment is not yet at rest on the subject.

PUBLICATIONS RECEIVED

Agricultural Experiment Stations. Bulletins and Reports. Cornell University: No. 160. Hints on Rural School Grounds. By L. H. Bailey. Pp. 20; No. 161. Annual Flowers. By G. N. Lanman and L. H. Bailey. Pp. 32; No. 162. The Period of Gestation in Cows. By H. H. Wing. Pp. 120. – Delaware College: No. 43 (abridged edition). The European and Japanese Chestnuts in the United States. By G. H. Powell. Pp. 16. – Michigan: Nos. 164 and 165. Methods and Results of Tillage, and Draft of Farm Implements. By M. W. Fulton. Pp. 24; Elementary Science Bulletin, No. 5. Branches of Sugar Maple and Beech as seen in Winter. By W. J. Beal. Pp. 4; do., No. 6. Potatoes, Rutabagas, and Onions. By W. J. Beal. Pp. 6. – New Jersey: No. 133. Peach Growing in New Jersey. By A. T. Jordan. Pp. 16; No. 134. Fermentation and Germ Life. By Julius Nelson. Pp. 24. – North Dakota: No. 15. Some Chemical Problems Investigated. Pp. 28. – Ohio: Newspaper Bulletin 188. Sugar Beets and Sorghum in Ohio. Pp. 2.

Aston, W. G. A History of Japanese Literature. New York: D. Appleton and Company. Pp. 408. $1.50.

Berry, Arthur. A Short History of Astronomy. New York: Charles Scribner's Sons. Pp. 440. $1.50.

Brush and Pencil. An Illustrated Magazine of the Arts and Crafts. Monthly. Chicago: Arts and Crafts Company. Pp. 64. 25 cents. $2.50 a year.

Bulletins, Reports, etc. Colgate University, Department of Geology and Natural History: Announcement. Pp. 16. – Field Columbian Museum, Chicago: Annual Report of the Board of Directors for 1897-'98. Pp. 90, with plates. – Financial Reform Association: 1848 to 1898. Fifty Years' Retrospect. London. Pp. 54, with plates; Financial Reform Almanac for 1899. London. Pp. 316. 1 shilling. – New York State Library: Legislative Bulletin for 1898. Pp. 132. 25 cents. – New York University: Catalogue and Announcements for 1898-'99. Pp. 358. – Perkins Institution and Massachusetts School for the Blind: Sixty-seventh Annual Report of the Trustees, to August 31, 1898. Pp. 305. – United States Department of Labor: Bulletin No. 20, January, 1899. Edited by Carroll D. Wright and Oren W. Weaver. Pp. 170.

Byrd, Mary E. Laboratory Manual in Astronomy. Boston: Ginn & Co. Pp. 273.

Cajori, Florian. A History of Physics in its Elementary Branches, including the Evolution of Physical Laboratories. New York: The Macmillan Company. Pp. 323. $1.60.

Callie, J. W. S. John Smith's Reply to "Merrie England, Defense of the Liberal Programme." London: John Heywood. Pp. 88. Sixpence.

Chapman, Frank H., Editor. Bird Lore. February, 1898, Vol. I, No. 1. Bimonthly. New York: The Macmillan Company. Pp. 32. 20 cents. $1 a year.

Davenport, Charles B. Experimental Morphology. Part II. New York: The Macmillan Company. Pp. 509. $2.

Evans, A. H. Birds (The Cambridge Natural History, edited by S. F. Harmer and A. E. Shipley, Vol. IX). New York: The Macmillan Company. Pp. 635. $3.50.

Egbert, Seneca. A Manual of Hygiene and Sanitation. Philadelphia: Lea Brothers & Co. Pp. 368.

Foulke, William Dudley. Slav or Saxon: a Study of the Growth and Tendencies of Russian Civilization. New York: G. P. Putnam's Sons. Pp. 141. $1.

Huntington, Elon. The Earth's Rotation and its Interior Heat. Pp. 33.

Janes, Lewis G. Our Nation's Peril. Social Ideas and Social Progress. Pp. 31. 25 cents.

McLellan, J. A., and Ames, A. F. The Public School Mental Arithmetic. New York: The Macmillan Company. Pp. 138. 25 cents. Boston: James H. West & Co.

Maltbie, Milo Ray. Municipal Functions. A Study of the Development, Scope, and Tendency of Municipal Socialism. (Municipal Affairs, December, 1898.) New York: Reform Club, Committee of Municipal Administration. Pp. 230. 75 cents.

Mason, Hon. William E. Speech in the United States Senate on the Government of Foreign Peoples. Pp. 26.

Patten, Simon N. The Development of English Thought. New York: The Macmillan Company. Pp. 415. $3.

Pittsburg Press Almanac, The, for 1899. Quarterly. St. Louis: The Press Publishing Company. Pp. 536.

Récéjac, E. Essay on the Basis of the Mystic Knowledge. Translated by Sera Carr Upton. New York: Charles Scribner's Sons. Pp. 287. $2.50.

Reprints. Caldwell, Otis W. The Life History of Lemna Minor. Pp. 32. – Calkins, G. N. Some Hydroids from Puget Sound. Pp. 24, with six plates. – Cope, Edward D. Vertebrate Remains from the Port Kennedy Bone Deposit. Pp. 75, with plates. – Fitz, G. W. Play as a Factor in Development. Pp. 7; The Hygiene of Instruction in Elementary Schools. Pp. 7. – Howard, William Lee. Double Personality; Lenten Hysteria. Pp. 8. – Howe, R. H., Jr. North American Wood Frogs. – Hunt, Charles Wallace. The Engineer: His Work, his Ethics, his Pleasures. (President's Address, American Society of Mechanical Engineers.) Pp. 15. – Hunter, S. J. The Coccidæ of Kansas. Pp. 15, with plates. – Krauss, W. C. The Stigmata of Degeneration. Pp. 360. – Lichty, D. Thalassic Submersion a Means of Disposal of the Dead. Pp. 12. – McDonald, Arthur. Emile Zola. Pp. 16. – Phillips, W. B. Iron Making in Alabama. Montgomery. Pp. 380. – Saunders, De Alten. Phycological Memoirs. Pp. 20, with plates. – Schlicht, Paul J. A New Process of Combustion. Pp. 32. – Stevens, F. L. The Effect of Aqueous Solutions upon the Germination of Fungus Spores. Pp. 30. – Stock, H. H. The International Correspondence Schools, Scranton, Pennsylvania. Pp. 12. – Urn, The. Modern Thought on Modern Cremation. United States Cremation Company. Pp. 40. – Veeder, M. A. The Relative Importance of Flies and Water Supply in Spreading Disease. Pp. 8.

Robinson, Albert Gardner. The Porto Rico of To-day. New York: Charles Scribner's Sons. Pp. 240, with maps. $1.50.

Salazar, A. E. Kalkules de Kañerius de Agua (Calculations of Water Conduits). Santiago de Chile. Pp. 246.

Schnabel, Dr. Carl. Handbook of Metallurgy. Translated by Henry Louis. 2 vols. New York: The Macmillan Company. Pp. 876 and 732. $10.

Seligman, E. R. A. The Shifting and Incidence of Taxation. Second edition. New York: The Macmillan Company. Pp. 337. $3.

Semon, Richard. In the Australian Bush and on the Coast of the Coral Sea. New York: The Macmillan Company. Pp. 552. $6.50.

Spencer, Baldwin, and Gillen, F. J. The Native Tribes of Central Australia. New York: The Macmillan Company. Pp. 671, with plates. $6.50.

Technology Review, The. A Quarterly Magazine relating to the Massachusetts Institute of Technology. January, 1899. Pp. 143. 35 cents.

United States National Museum. Annual Report for the Year ending June 30, 1896. (Smithsonian Institution.) Washington. Pp. 1107, with plates.

Weir, James. The Dawn of Reason. Mental Traits in the Lower Animals. New York: The Macmillan Company. Pp. 234. $1.25.

Westcott, Edward N. David Harum. New York: D. Appleton and Company. Pp. 392. $1.50.

Whipple, G. C. The Microscopy of Drinking Water. New York: John Wiley & Sons. Pp. 300, with nineteen plates. $3.50.

Wilkinson, F. The Story of the Cotton Plant. (Library of Useful Stories.) New York: D. Appleton and Company. Pp. 191. 40 cents.

Fragments of Science

The Nernst Electric Lamp.– Prof. Walter Nernst, of the University of Göttingen, has recently devised an electric lamp which promises to be an important addition to our present methods of lighting. The part of the lamp which emits the light consists of a small rod of highly refractory material, said to be chiefly thoria, which is supported between two platinum electrodes. The rod is practically a nonconductor when cold, but by heating it (in the smaller sizes a match is sufficient) its conductivity is so raised that a current will pass through it; after the current is once started the heat produced by the resistance of the rod is sufficient to keep up its conductivity, and the latter is raised to a state of intense incandescence, and gives out a brilliant white light. As the preliminary heating by means of a match or other flame would in some cases be an inconvenience, Professor Nernst has devised a lamp which, by means of a platinum resistance attachment, can be started by simply turning a switch. The life of the rods is about five hundred hours. The lamps are said to work equally well with either alternating or direct currents, and there is no vacuum necessary. If this lamp proves a success as a commercial apparatus, it will be but another example of how slight a matter may make all the difference between success and failure. There have been numerous experimenters trying for the last ten years, and in fact ever since the appearance of the arc lamp, to utilize in an electric lamp the great light-giving power of the refractory earths in a state of incandescence; but, owing to their high resistance at ordinary temperatures, no results were obtained until Professor Nernst thought of heating his thoria rod, and this simple procedure seems to have solved the whole difficulty. It is claimed that the Nernst lamp is a much more economical transformer of electricity into light than the present incandescent electric lamps. An apparatus called a kaolin candle, which has been suggested as an anticipation of Professor Nernst's lamp, was constructed by Paul Jablochkoff in 1877 or 1878. It consisted of a strip of kaolin, along which ran a "match" of some conducting material. The current was passed through this "match" until the kaolin strip became heated sufficiently to become a conductor itself. The lamp did not, however, prove a commercial success.

Laws of Climatic Evolution.– The problem of the laws of climatic evolution was characterized by Dr. Marsden Manson, in a paper read at the British Association, as one of the grandest and most far-reaching problems in geological physics, since it embraces principles and laws applicable to other planets than ours. After presenting a formulation of those laws, the author pointed out that in consequence of their working, a hot spheroid rotating in space and revolving about a central sun, and holding fluids of similar properties to water and air within the sphere of its control, must pass through a series of uniform climates at sea level, gradually decreasing in temperature and terminating in an ice age, and that this age must be succeeded by a series of zonal climates gradually increasing in temperature and extent. The conclusions thus reached were that in the case of the earth zonal distribution of climates was inaugurated at the culmination of the ice age, and is gradually increasing in temperature and extent by the trapping of the solar energy in the lower atmosphere, and that the rise has a moderate limit; that the ice age was unique and due to the physical properties of water and air, and to the difference in specific heat of land and water; and that prior to the ice age local formation of glaciers could occur at any latitude and period. Dr. Manson then observed that Jupiter was apparently in a condition through which the earth has already passed, and Mars was in one toward which the climatic evolution of the earth was tending.

Poisonous Plants.– Statistics in regard to poisonous plants are lacking on account of a general ignorance of the subject, and it is therefore impossible to form even an approximate estimate of the damage done by them. Besides the criminal uses that may be made of them, there are some other problems connected with them that are of general public interest. The common law of England holds those who possess and cultivate such plants responsible for damages accruing from them; and a New York court has awarded damages in a case of injury from poison ivy growing in a cemetery. In order to obtain information on the subject, the botanical division of the Department of Agriculture arranged to receive notices through the clipping bureaus of the cases of poisoning recorded in the newspapers. Thus through the persons named in the articles or through the local postmaster it was put in correspondence with the physician in the case, who furnished the authentic facts. A large number of correct and valuable data were thus secured. It is proved by these facts that all poisonous plants are not equally injurious to all persons nor to all forms of life. Thus poison ivy has no apparent external effect upon animals, and a few of them eat its leaves with impunity; and it acts upon the skin of the majority of persons with varying intensity – on some hardly at all, while others are extremely sensitive to it. A similar variability is found in the effects of poisonous plants taken internally. In some cases often regarded as of that kind, death is attributable not to any poison which the plant contains, but to immoderate or incautious eating, or to mechanical injury such as is produced in horses by the hairs of crimson clover, or to the effect of parasitic growths, such as ergot on rye. Excluding all which operate in these ways, there are, however, a large number of really poisonous plants, the properties of which are comparatively unknown. It is concerning these that information has been sought by the botanical division. Its report contains descriptions of about forty plants, with figures, belonging to seventeen families.

The United States Biological Survey.– The Biological Survey of the United States Department of Agriculture aims to define and map the agricultural belts of the country in order to ascertain what products of the soil can and what can not be grown successfully in each, to guide the farmer in the intelligent introduction of foreign crops, and to point out his friends and his enemies among the native birds and animals. For information on these subjects so important to him the farmer has had to rely on his own experiments or those of his neighbors, often carried on at enormous cost to persons little able to bear it. The Survey and its predecessor, the division of ornithology and mammology, have had small parties in the field traversing the public domain for the purpose of studying the geographic distribution of our native land animals and plants and mapping the boundaries of the areas they inhabit. It was early learned that North America is divisible into seven transcontinental belts or life zones and a much larger number of minor areas or faunas, each characterized by particular associations of animals and plants. The inference was natural and has been verified that these same zones and areas, up to the northern limit of profitable agriculture, are adapted to the needs of particular kinds or varieties of cultivated crops. The Survey is engaged in tracing as precisely as possible the actual boundaries of these belts and areas, and in finding out and designating the varieties of crops best adapted to each. In this undertaking it aims to point out such exotic products as, from their importance in other lands, are likely to prove of value if introduced on fit soils and under proper climatic conditions. The importance of this work will be realized when it is recollected that all the climatic life zones of the world, except the hottest tropical, are represented in our country. The colored maps prepared by the Survey furnish the best guide the farmer can have for judging what crops will be best adapted for his particular region; and in connection with the work of the entomologist, show the belts along which noxious insects are likely to spread. The report of the Survey, prepared under the direction of its chief, C. Hart Merriam, though full of valuable information not before presented consecutively, is preliminary and only touches the edge of a subject which is susceptible of copious elaboration, and is destined to be worked up with immense profit.

A Neolithic Lake Dwelling.– A crannog, or lake dwelling, discovered in the summer of 1898 on the banks of the Clyde, has received much attention from English archæologists because of its unique situation on a tidal stream, and of its being apparently neolithic or far more ancient than any other crannog yet examined, in all others the relics being of the bronze age. Careful excavations have been made in it and are still in progress, and the refuse mound of the former settlement has been sifted, with results that have made it plain that there were design and execution in the building, and that it was occupied and inhabited for a long period. Positive evidence of fire is afforded in the shape of numerous firestones and calcined embers, and indications of the condition of life at the period are given by the implements, ornaments, and tools recovered. The crannog is about sixteen hundred yards east of the Castle Rock of Dumbarton, and about fifty yards from the river at low tide, but is submerged when the tide is in to a depth of from three to twelve feet, and is one hundred and eighty-four feet in circuit. The piles in the outer circle are of oak, which below the mud surface is still quite fresh. The transverse beams and pavement inside are of wood of the consistence of cheese – willow, alder, and oak – while the smaller branches are of fir, birch, and hazel, with bracken, moss, and chips. The stones in the outer circle and along the causeway leading to the dwelling place seem to have been set in a methodical order, most of the bowlders being about a lift for a man. The refuse mound extends for about twelve feet outside for the greater part of the circuit, and here most of the bone and flint implements have been discovered. The largest article found in the site was a very fine canoe, thirty-seven feet long and forty inches beam, dug out of a single oak tree, which lay in what has proved to have been a dock. A curious ladder was also found here, the rungs of which were cut out of the solid wood, and which has somewhat the general appearance of a post of a post-and-rail fence. The exploration of the site is much interfered with by the rising of the tide, which covers the crannog for a considerable time every day. All the relics found – consisting chiefly of objects of bone, staghorn, jet, chert, and cannel coal, with some querns, the canoe, ladder, etc. – have been placed in the museum at Glasgow.

Portland Cement.– The following facts are taken from an address delivered before the Franklin Institute by Mr. Robert W. Lesley: "It was not until the end of the last century that the true principles of hydraulic cement were discovered by Smeaton, who, in the construction of the Eddystone Lighthouse, made a number of experiments with the English limestones, and laid down, as a result, the principle that a limestone yielding from fifteen to twenty-five per cent of residue when dissolved in hydrochloric acid will set under water. These limestones he denominated hydraulic limestones, and from the principle so laid down by him come the two great definitions of what we now know as cement, namely, the natural and artificial cements of commerce. The natural variety, such as the Rosendale, Lehigh, and Cumberland cements, was first made by Joseph Parker in 1796, who discovered what he called 'Roman cement,' based upon the calcination at low temperatures of the nodules found in the septaria geological formation in England. This was practically the first cement of commerce, and gave excellent results. Joseph Aspdin, a bricklayer or plasterer, took out a patent in England in 1824 on a high-grade artificial cement, and, at great personal deprivation, succeeded in manufacturing it on a commercial scale by combining English chalks with clay from the river beds, drying the mixed paste, and after calcining at high heat the material thus produced, grinding it to powder. This cement, which was the first Portland cement in the market, obtained its name from its resemblance when it became stone to the celebrated Portland stone, one of the leading building materials in England. The rocks used in the manufacture of Portland cement are very similar to those from which natural cement is made. The various layers in the natural rock may vary in size or stratification, so that the lime, alumina, and silica may not be in position to combine under heat, or there may be too much of one ingredient, or not enough of the others in close proximity to each other. In making Portland cement, these rocks, properly proportioned, are accordingly ground to an impalpable powder, the natural rock being broken down and the laminæ distributed in many small grains. This powder is then mixed with water, and is made into a new stone in the shape of the brick, or block, in which all the small grains formerly composing the laminæ of the original rock are distributed and brought into a close mechanical juxtaposition to each other. The new rock thus made is put into kilns with layers of coke, and is then calcined at temperatures from 1,600° to 1,800°. The clinker, as it comes from the kiln, is then crushed and ground to an impalpable powder, which is the Portland cement of commerce. Portland cement may be made from other materials, such as chalk and clay, limestone and clay, cement rock and limestone, and marls and clays. In every case the principle is the same, the breaking down and the redistributing of the materials so that the fine particles may be in close mechanical union when subjected to the heat of the kiln."

The French Nontoxic Matches.– It is believed, by Frenchmen at least, that the problem long sought, of finding a composition for a match head in which all the advantages of white phosphorus shall be preserved while its deleterious qualities are eliminated or greatly reduced, has been solved in the new matches which the French Government has placed upon the market. These matches are marked S. C., by the initials of the inventors, MM. Sévène and Cahen, are made in the factories at Trélazé, Begles, and Samtines, and have been well received by the public. In preparing the composition, the chlorate of potash of the old flashing and safety matches has been retained, and the sesquisulphide of phosphorus is used instead of the white or red phosphorus of the old matches. The latter substance, besides the indispensable qualities of fixity and resistance to atmospheric influences, has the two important properties of inflaming at 95 °C., much nearer the igniting point of white phosphorus (60 °C.) than of red (260 °C.), and being therefore easier to light; and of having a low latent or specific heat. With these properties embodied in the inflammable composition of the head, the new match is expected to be comparatively free from accidental explosions during manufacture and export, to take fire by friction, and to burn steadily and regularly. The expectation has so far been fulfilled. The phosphorus compound has a special odor, in which the sulphur characteristic predominates, but, not boiling under 380 °C., does not become offensive in the shops; and the match heads made with it do not emit the phosphorescence which is often exhibited by matches made with white phosphorus. It is only feebly toxic by direct absorption, experiments on guinea pigs indicating that it is only about one tenth as much so as white phosphorus.

Trees as Land Formers.– John Gifford, in a paper presented to the Franklin Institute on Forestry in Relation to Physical Geography and Engineering, mentions as illustrating the way forests counteract certain destructive forces, the mangrove tree as "the great land former which, supplementing the work of the coral polyp, has added to the warm seashore regions of the globe immense areas of land." The trees grow in salt water several feet deep, where their labyrinth of roots and branches collect and hold sediment and flotage. Thus the shore line advances. The seeds, germinating on the plant, the plantlets fall into the water, float away till their roots touch the bottom, and there form the nucleus of new islands and life. The forest constantly improves the soil, provided the latter is not removed or allowed to burn. The roots of trees penetrate to its deeper layers and absorb great quantities of mineral matters, a large percentage of which goes to the leaves, and is ultimately deposited on the surface. "The surface soil is both enriched by these mineral substances and protected by a mulch of humus in varying stages of decomposition. As the lower layers rot, new layers of leaves and twigs are being constantly deposited, so that the forest soil, in the course of time, fairly reeks with nourishing plant food, which seeps out more or less to enrich neighboring soils." The forest is also a soil former. "Even the most tender rootlet, because of its acidity, is able to dissolve its way through certain kinds of rock. This, together with the acids formed in the decomposition of humus, is a potent and speedy agent in the production of soil. The roots of many species of trees have no difficulty whatever in penetrating limestone and in disintegrating rocks of the granitic series. As the rock crumbles, solid inorganic materials are released, which enrich neighboring soils, especially those of the valleys in regions where the forest is relegated to the mountain sides and top, as should be the case in all mountainous regions. In view of the destruction caused by mankind, it is a consoling fact that Nature, although slowly, is gradually improving her waste lands. If not interrupted, the barest rock and the fallowest field, under conditions which may be called unfavorable, will become, in course of time, forest-clad and fertile. The most important function of the forest in relation to the soil, however, is in holding it in place and protecting it from the erosive action of wind and rain."

На страницу:
15 из 17