
Полная версия
Man's Place in the Universe
We have already seen that vegetable organisms obtain the chief part of the nitrogen in their tissues from ammonia produced in the atmosphere and carried into the earth by rain. This substance can only be thus produced by the agency of electrical discharges, or lightning, which cause the combination of the hydrogen in the aqueous vapour with the free nitrogen of the air. But clouds are important agents in the accumulation of electricity in sufficient amount to produce the violent discharges we know as lightning, and it is doubtful whether without them there would be any discharges through the atmosphere capable of decomposing the aqueous vapour in it. Not only are clouds beneficial in the production of rain, and also in moderating the intensity of continuous sun-heat, but they are also requisite for the formation of chemical compounds in vegetables which are of the highest importance to the whole animal kingdom. So far as we know, animal life could not exist on the earth's surface without this source of nitrogen, and therefore without clouds and lightning; and these, we have just seen, depend primarily on a due proportion of dust in the atmosphere.
But this due proportion of dust is mainly supplied by volcanoes and deserts, and its distribution and constant presence in the air depends upon the density of the atmosphere. This again depends on two other factors: the force of gravity due to the mass of the planet, and the absolute quantity of the free gases constituting the atmosphere.
We thus find that the vast, invisible ocean of air in which we live, and which is so important to us that deprivation of it for a few minutes is destructive of life, produces also many other beneficial effects of which we usually take little account, except at times when storm or tempest, or excessive heat or cold, remind us how delicate is the balance of conditions on which our comfort, and even our lives, depend.
But the sketch I have here attempted to give of its varied functions shows us that it is really a most complex structure, a wonderful piece of machinery, as it were, which in its various component gases, its actions and reactions upon the water and the land, its production of electrical discharges, and its furnishing the elements from which the whole fabric of organic life is composed and perpetually renewed, may be truly considered to be the very source and foundation of life itself. This is seen, not only in the fact of our absolute dependence upon it every minute of our lives, but in the terrible effects produced by even a slight degree of impurity in this vital element. Yet it is among those nations that claim to be the most civilised, those that profess to be guided by a knowledge of the laws of nature, those that most glory in the advance of science, that we find the greatest apathy, the greatest recklessness, in continually rendering impure this all-important necessary of life, to such a degree that the health of the larger portion of their populations is injured and their vitality lowered, by conditions which compel them to breathe more or less foul and impure air for the greater part of their lives. The huge and ever-increasing cities, the vast manufacturing towns belching forth smoke and poisonous gases, with the crowded dwellings, where millions are forced to live under the most terrible insanitary conditions, are the witnesses to this criminal apathy, this incredible recklessness and inhumanity.
For the last fifty years and more the inevitable results of such conditions have been fully known; yet to this day nothing of importance has been done, nothing is being done. In this beautiful land there is ample space and a superabundance of pure air for every individual. Yet our wealthy and our learned classes, our rulers and law-makers, our religious teachers and our men of science, all alike devote their lives and energies to anything or everything but this. Yet this is the one great and primary essential of a people's health and well-being, to which everything should, for the time, be subordinate. Till this is done, and done thoroughly and completely, our civilisation is naught, our science is naught, our religion is naught, and our politics are less than naught—are utterly despicable; are below contempt.
It has been the consideration of our wonderful atmosphere in its various relations to human life, and to all life, which has compelled me to this cry for the children and for outraged humanity. Will no body of humane men and women band themselves together, and take no rest till this crying evil is abolished, and with it nine-tenths of all the other evils that now afflict us? Let everything give way to this. As in a war of conquest or aggression nothing is allowed to stand in the way of victory, and all private rights are subordinated to the alleged public weal, so, in this war against filth, disease, and misery let nothing stand in the way—neither private interests nor vested rights—and we shall certainly conquer. This is the gospel that should be preached, in season and out of season, till the nation listens and is convinced. Let this be our claim: Pure air and pure water for every inhabitant of the British Isles. Vote for no one who says 'It can't be done.' Vote only for those who declare 'It shall be done.' It may take five or ten or twenty years, but all petty ameliorations, all piecemeal reforms, must wait till this fundamental reform is effected. Then, when we have enabled our people to breathe pure air, and drink pure water, and live upon simple food, and work and play and rest under healthy conditions, they will be in a position to decide (for the first time) what other reforms are really needed.
Remember! We claim to be a people of high civilisation, of advanced science, of great humanity, of enormous wealth! For very shame do not let us say 'We cannot arrange matters so that our people may all breathe unpolluted, unpoisoned air!'
CHAPTER XIV
THE EARTH IS THE ONLY HABITABLE PLANET IN THE SOLAR SYSTEMHaving shown in the last three chapters how numerous and how complex are the conditions which alone render life possible on our earth, how nicely balanced are opposing forces, and how curious and delicate are the means by which the essential combinations of the elements are brought about, it will be a comparatively easy task to show how totally unfitted are all the other planets either to develop or to preserve the higher forms of life, and, in most cases, any forms above the lowest and most rudimentary. In order to make this clear we will take the most important of the conditions in order, and see how the various planets fulfil them.
Mass of a Planet and its AtmosphereThe height and density of the atmosphere of a planet is important as regards life in several ways. On its density depends its power of carrying moisture; of holding a sufficient supply of dust-particles for the formation of clouds; of carrying ultra-microscopic particles to such a height and in such quantity as to diffuse the light of the sun by reflection from the whole sky; of raising waves in the ocean and thus aerating its waters, and of producing the ocean currents which so greatly equalise temperature. Now this density depends on two factors: the mass of the planet and the quantity of the atmospheric gases. But there is good reason to think that the latter depends directly upon the former, because it is only when a certain mass is attained that any of the lighter permanent gases can be held on the surface of a planet. Thus, according to Dr. G. Johnstone Stoney, who has specially studied this subject, the moon cannot retain even such a heavy gas as carbonic acid, or the still heavier carbon disulphide; while no particle of oxygen, nitrogen, or water-vapour can possibly remain on it, owing to the fact of its mass being only about one-eightieth that of the earth. It is believed that there are considerable quantities of gases in the stellar spaces, and probably also within the solar system, but perhaps in the liquid or solid form. In that state they might be attracted by any small mass such as the moon, but the heat of its surface when exposed to the solar rays would quickly restore them to the gaseous condition, when they would at once escape.
It is only when a planet attains a mass at least a quarter that of the earth that it is capable of retaining water-vapour, one of the most essential of the gases; but with so small a mass as this, its whole atmosphere would probably be so limited in amount and so rare at the planet's surface that it would be quite unable to fulfil the various purposes for which an atmosphere is required in order to support life. For their adequate fulfilment the mass of a planet cannot be much less than that of the earth. Here we come to one of those nice adjustments of which so many have been already pointed out. Dr. Johnstone Stoney arrives at the conclusion that hydrogen escapes from the earth. It is continually produced in small quantities by submarine volcanoes, by fissures in volcanic regions, from decaying vegetation, and from some other sources; yet, though sometimes found in minute quantities, it forms no regular constituent of our atmosphere.18
The quantity of hydrogen combined with oxygen to form the mass of water in our vast and deep oceans is enormous. Yet if it had been only one-tenth more than it actually is, the present land-surface would have been almost all submerged. How the adjustments occurred so that there was exactly enough hydrogen to fill the vast ocean basins with water to such a depth as to leave enough land-surface for the ample development of vegetable and animal life, and yet not so much as to be injurious to climate, it is difficult to imagine. Yet the adjustment stares us in the face. First, we have a satellite unique in size as compared with its primary, and apparently in lateness of origin; then we have a mode of origin for that satellite said to be certainly unique in the solar system; as a consequence of this origin, it is believed, we have enormously deep ocean basins symmetrically placed with regard to the equator—an arrangement which is very important for ocean circulation; then we must have had the right quantity of hydrogen, obtained in some unknown way, which formed water enough to fill these chasms, so as to leave an ample area of dry land, but which one-tenth more water would have ingulfed; and, lastly, we have oxygen enough left to form an atmosphere of sufficient density for all the requirements of life. It could not be that the surplus hydrogen escaped when the water had been produced, because it escapes very slowly, and it combines so easily with free oxygen by means of even a spark, as to make it certain that all the available hydrogen was used up in the oceanic waters, and that the supply from the earth's interior has been since comparatively small in amount.
There is yet one more adjustment to be noticed. All the facts now referred to show that the earth's mass is sufficient to bring about the conditions favourable for life. But if our globe had been a little larger, and proportionately denser, in all probability no life would have been possible. Between a planet of 8000 and one of 9500 miles diameter is not a large difference, when compared with the enormous range of size of the other planets. Yet this slight increase in diameter would give two-thirds increase in bulk, and, with a corresponding increase of density due to the greater gravitative force, the mass would be about double what it is. But with double the mass the quantity of gases of all sorts attracted and retained by gravity would probably have been double; and in that case there would have been double the quantity of water produced, as no hydrogen could then escape. But the surface of the globe would only be one half greater than at present, in which case the water would have sufficed to cover the whole surface several miles deep.
Habitability of Other PlanetsWhen we look to the other planets of our system we see everywhere illustrations of the relation of size and mass to habitability. The smaller planets, Mercury and Mars, have not sufficient mass to retain water-vapour, and, without it, they cannot be habitable. All the larger planets can have very little solid matter, as indicated by their very low density notwithstanding their enormous mass. There is, therefore, very good reason for the belief that the adaptability of a planet for a full development of life is primarily dependent, within very narrow limits, on its size and, more directly, on its mass. But if the earth owes its specially constituted atmosphere and its nicely adjusted quantity of water to such general causes as here indicated, and the same causes apply to the other planets of the solar system, then the only planet on which life can be possible is Venus. As, however, it may be urged that exceptional causes may have given other planets an equal advantage in the matter of air and water, we will briefly consider some of the other conditions which we have found to be essential in the case of the earth, but which it is almost impossible to conceive as existing, to the required extent, on any of the other planets of the solar system.
A Small and Definite Range of TemperatureWe have already seen within what narrow limits the temperature on a planet's surface must be maintained in order to develop and support life. We have also seen how numerous and how delicate are the conditions, such as density of atmosphere, extent and permanence of oceans, and distribution of sea and land, which are requisite, even with us, in order to render possible the continuous preservation of a sufficiently uniform temperature. Slight alterations one way or another might render the earth almost uninhabitable, through its being liable to alternations of too great heat or excessive cold. How then can we suppose that any other of the planets, which have either very much more or very much less sun-heat than we receive, could, by any possible modification of conditions, be rendered capable of producing and supporting a full and varied life-development?
Mars receives less than half the amount of sun-heat per unit of surface that we do. And as it is almost certain that it contains no water (its polar snows being caused by carbonic acid or some other heavy gas) it follows that, although it may produce vegetable life of some low kinds, it must be quite unsuited for that of the higher animals. Its small size and mass, the latter only one-ninth that of the earth, may probably allow it to possess a very rare atmosphere of oxygen and nitrogen, if those gases exist there, and this lack of density would render it unable to retain during the night the very moderate amount of heat it might absorb during the day. This conclusion is supported by its low reflecting power, showing that it has hardly any clouds in its scanty atmosphere. During the greater part of the twenty-four hours, therefore, its surface-temperature would probably be much below the freezing point of water; and this, taken in conjunction with the total absence of aqueous vapour or liquid water, would add still further to its unsuitability for animal life.
In Venus the conditions are equally adverse in the other direction. It receives from the sun almost double the amount of heat that we receive, and this alone would render necessary some extraordinary combination of modifying agencies in order to reduce and render uniform the excessively high temperature. But it is now known that Venus has one peculiarity which is in itself almost prohibitive of animal life, and probably of even the lowest forms of vegetable life. This peculiarity is, that through tidal action caused by the sun, its day has been made to coincide with its year, or, more properly, that it rotates on its axis in the same time that it revolves round the sun. Hence it always presents the same face to the sun; and while one half has a perpetual day, the other half has perpetual night, with perpetual twilight through refraction in a narrow belt adjoining the illuminated half. But the side that never receives the direct rays of the sun must be intensely cold, approximating, in the central portions, to the zero of temperature, while the half exposed to perpetual sunshine of double intensity to ours must almost certainly rise to a temperature far too great for the existence of protoplasm, and probably, therefore, of any form of animal life.
Venus appears to have a dense atmosphere, and its brilliancy suggests that we see the upper surface of a cloud-canopy, and this would no doubt greatly reduce the excessive solar heat. Its mass, being a little more than three-fourths that of the earth, would enable it to retain the same gases as we possess. But under the extraordinary conditions that prevail on the surface of this planet, it is hardly possible that the temperature of the illuminated side can be preserved in a sufficient state of uniformity for the development of life in any of its higher forms.
Mercury possesses the same peculiarity of keeping one face always towards the sun, and as it is so much smaller and so much nearer the sun its contrasts of heat and cold must be still more excessive, and we need hardly discuss the possibility of this planet being habitable. Its mass being only one-thirtieth that of the earth, water-vapour will certainly escape from it, and, most probably, nitrogen and oxygen also, so that it can possess very little atmosphere; and this is indicated by its low reflecting power, no less than 83 per cent. of the sun's light being absorbed, and only 17 per cent. reflected, whereas clouds reflect 72 per cent. This planet is therefore intensely heated on one side and frozen on the other; it has no water and hardly any atmosphere, and is therefore, from every point of view, totally unfitted for supporting living organisms.
Even if it is supposed that, in the case of Venus, its perpetual cloud-canopy may keep down the surface temperature within the limits necessary for animal life, the extraordinary turmoil in its atmosphere caused by the excessively contrasted temperatures of its dark and light hemispheres must be extremely inimical to life, if not absolutely prohibitive of it. For on the greater part of the hemisphere that never receives a ray of light or heat from the sun all the water and aqueous vapour must be turned into ice or snow, and it seems almost impossible that the air itself can escape congelation. It could only do so by a very rapid circulation of the whole atmosphere, and this would certainly be produced by the enormous and permanent difference of temperature between the two hemispheres. Indications of refraction by a dense atmosphere are visible during the planet's transit over the sun's disc, and also when it is in conjunction with the sun, and the refraction is so great that Venus is believed to have an atmosphere much higher than ours. But during the rapid circulation of such an atmosphere, heated on one half the planet and cooled on the other, most of the aqueous vapour must be taken out of it on the dark side as fast as it is produced on the heated side, though sufficient may remain to produce a canopy of very lofty clouds analogous to our cirri. The occasional visibility of the dark side of Venus may be caused by an electrical glow due to the friction of the perpetually overflowing and inflowing atmosphere, this being increased by reflection from a vast surface of perpetual snow. If we consider all the exceptional features of this planet, it appears certain that the conditions as regards climate cannot now be such as to maintain a temperature within the narrow limits essential for life, while there is little probability that at any earlier period it can have possessed and maintained the necessary stability during the long epochs which are requisite for its development.
Before considering the condition of the larger planets, it will be well to refer to an argument which has been supposed to minimise the difficulties already stated as to those planets which approach nearest to the earth in size and distance from the sun.
The Argument from Extreme Conditions, on the EarthIn reply to the evidence showing how nice are the adaptations required for life-development, it is often objected that life does now exist under very extreme conditions—under tropic heat and arctic snows; in the burnt-up desert as well as in the moist tropical forest; in the air as well as in the water; on lofty mountains as well as on the level lowlands. This is no doubt true, but it does not prove that life could have been developed in a world where any of these extremes of climate characterised the whole surface. The deserts are inhabited because there are oases where water is attainable, as well as in the surrounding fertile areas. The arctic regions are inhabited because there is a summer, and during that summer there is vegetation. If the surface of the ground were always frozen, there would be no vegetation and no animal life.
The late Mr. R.A. Proctor put this argument of the diversity of conditions under which life actually does exist on the earth as well probably as it can be put. He says: 'When we consider the various conditions under which life is found to prevail, that no difference of climatic relations, or of elevation, of land, or of air, or of water, of soil in land, of freshness or saltness in water, of density in air, appears (so far as our researches have extended) to render life impossible, we are compelled to infer that the power of supporting life is a quality which has an exceedingly wide range in nature.'
This is true, but with certain reservations. The only species of animal which does really exist under the most varied conditions of climate is man, and he does so because his intellect renders him to some extent the ruler of nature. None of the lower animals have such a wide range, and the diversity of conditions is not really so great as it appears to be. The strict limits are nowhere permanently overpassed, and there is always the change from winter to summer, and the possibility of migration to less inhospitable areas.
The Great Planets all UninhabitableHaving already shown that the condition of Mars, both as regards water, atmosphere, and temperature, is quite unfitted to maintain life, a view in which both general principles and telescopic examination perfectly agree, we may pass on to the outer planets, which, however, have long been given up as adapted for life even by the most ardent advocates for 'life in other worlds.' Their remoteness from the sun—even Jupiter being five times as far as the earth, and therefore receiving only one twenty-fifth of the light and heat that we receive per unit of surface—renders it almost impossible, even if other conditions were favourable, that they should possess surface-temperatures adequate to the necessities of organic life. But their very low densities, combined with very large size, renders it certain that they none of them have a solidified surface, or even the elements from which such a surface could be formed.
It is supposed that Jupiter and Saturn, as well as Uranus and Neptune, retain a considerable amount of internal heat, but certainly not sufficient to keep the metallic and other elements of which the sun and earth consist in a state of vapour, for if so they would be planetary stars and would shine by their own light. And if any considerable portion of their bulk consisted of these elements, whether in a solid or a liquid state, their densities would necessarily be much greater than that of the earth instead of very much less—Jupiter is under one-fourth the density of the earth, Saturn under an eighth, while Uranus and Neptune are of intermediate densities, though much less in bulk even than Saturn.
It thus appears that the solar system consists of two groups of planets which differ widely from each other. The outer group of four very large planets are almost wholly gaseous, and probably consist of the permanent gases—those which can only be liquefied or solidified at a very low temperature. In no other way can their small density combined with enormous bulk be accounted for.
The inner group also of four planets are totally unlike the preceding. They are all of small size, the earth being the largest. They are all of a density roughly proportionate to their bulk. The earth is both the largest and the densest of the group; not only is it situated at that distance from the sun which, through solar heat alone, allows water to remain in the liquid state over almost the whole of its surface, but it possesses numerous characteristics which secure a very equable temperature, and which have secured to it very nearly the same temperature during those enormous geological periods in which terrestrial life has existed. We have already shown that no other planet possesses these characteristics now, and it is almost equally certain that they never have possessed them in the past, and never will possess them in the future.