Полная версия
Man's Place in the Universe
Alfred Russel Wallace
Man's Place in the Universe / A Study of the Results of Scientific Research in Relation to the Unity or Plurality of Worlds, 3rd Edition
PREFACE
This work has been written in consequence of the great interest excited by my article, under the same title, which appeared simultaneously in The Fortnightly Review and the New York Independent. Two friends who read the manuscript were of opinion that a volume, in which the evidence could be given much more fully, would be desirable, and the result of the publication of the article confirmed their view.
I was led to a study of the subject when writing four new chapters on Astronomy for a new edition of The Wonderful Century. I then found that almost all writers on general astronomy, from Sir John Herschel to Professor Simon Newcomb and Sir Norman Lockyer, stated, as an indisputable fact, that our sun is situated in the plane of the great ring of the Milky Way, and also very nearly in the centre of that ring. The most recent researches also showed that there was little or no proof of there being any stars or nebulæ very far beyond the Milky Way, which thus seemed to be the limit, in that direction, of the stellar universe.
Turning to the earth and the other planets of the Solar System, I found that the most recent researches led to the conclusion that no other planet was likely to be the seat of organic life, unless perhaps of a very low type. For many years I had paid special attention to the problem of the measurement of geological time, and also that of the mild climates and generally uniform conditions that had prevailed throughout all geological epochs; and on considering the number of concurrent causes and the delicate balance of conditions required to maintain such uniformity, I became still more convinced that the evidence was exceedingly strong against the probability or possibility of any other planet being inhabited.
Having long been acquainted with most of the works dealing with the question of the supposed Plurality of Worlds, I was quite aware of the very superficial treatment the subject had received, even in the hands of the most able writers, and this made me the more willing to set forth the whole of the available evidence—astronomical, physical, and biological—in such a way as to show both what was proved and what suggested by it.
The present work is the result, and I venture to think that those who will read it carefully will admit that it is a book that was worth writing. It is founded almost entirely on the marvellous body of facts and conclusions of the New Astronomy together with those reached by modern physicists, chemists, and biologists. Its novelty consists in combining the various results of these different branches of science into a connected whole, so as to show their bearing upon a single problem—a problem which is of very great interest to ourselves.
This problem is, whether or no the logical inferences to be drawn from the various results of modern science lend support to the view that our earth is the only inhabited planet, not only in the Solar System but in the whole stellar universe. Of course it is a point as to which absolute demonstration, one way or the other, is impossible. But in the absence of any direct proofs, it is clearly rational to inquire into probabilities; and these probabilities must be determined not by our prepossessions for any particular view, but by an absolutely impartial and unprejudiced examination of the tendency of the evidence.
As the book is written for the general, educated body of readers, many of whom may not be acquainted with any aspect of the subject or with the wonderful advance of recent knowledge in that department often termed the New Astronomy, a popular account has been given of all those branches of it which bear upon the special subject here discussed. This part of the work occupies the first six chapters. Those who are fairly acquainted with modern astronomical literature, as given in popular works, may begin at my seventh chapter, which marks the commencement of the considerable body of evidence and of argument I have been able to adduce.
To those of my readers who may have been influenced by any of the adverse criticisms on my views as set forth in the article already referred to, I must again urge, that throughout the whole of this work, neither the facts nor the more obvious conclusions from the facts are given on my own authority, but always on that of the best astronomers, mathematicians, and other men of science to whose works I have had access, and whose names, with exact references, I generally give.
What I claim to have done is, to have brought together the various facts and phenomena they have accumulated; to have set forth the hypotheses by which they account for them, or the results to which the evidence clearly points; to have judged between conflicting opinions and theories; and lastly, to have combined the results of the various widely-separated departments of science, and to have shown how they bear upon the great problem which I have here endeavoured, in some slight degree, to elucidate.
As such a large body of facts and arguments from distinct sciences have been here brought together, I have given a rather full summary of the whole argument, and have stated my final conclusions in six short sentences. I then briefly discuss the two aspects of the whole problem—those from the materialistic and from the spiritualistic points of view; and I conclude with a few general observations on the almost unthinkable problems raised by ideas of Infinity—problems which some of my critics thought I had attempted in some degree to deal with, but which, I here point out, are altogether above and beyond the questions I have discussed, and equally above and beyond the highest powers of the human intellect.
Broadstone, Dorset,
September 1903.
CHAPTER I
EARLY IDEAS AS TO THE UNIVERSE AND ITS RELATION TO MANWhen men attained to sufficient intelligence for speculations as to their own nature and that of the earth on which they lived, they must have been profoundly impressed by the nightly pageant of the starry heavens. The intense sparkling brilliancy of Sirius and Vega, the more massive and steady luminosity of Jupiter and Venus, the strange grouping of the brighter stars into constellations to which fantastic names indicating their resemblance to various animals or terrestrial objects seemed appropriate and were soon generally adopted, together with the apparently innumerable stars of less and less brilliancy scattered broadcast over the sky, many only being visible on the clearest nights and to the acutest vision, constituted altogether a scene of marvellous and impressive splendour of which it must have seemed almost impossible to attain any real knowledge, but which afforded an endless field for the imagination of the observer.
The relation of the stars to the sun and moon in their respective motions was one of the earliest problems for the astronomer, and it was only solved by careful and continuous observation, which showed that the invisibility of the former during the day was wholly due to the blaze of light, and this is said to have been proved at an early period by the observed fact that from the bottom of very deep wells stars can be seen while the sun is shining. During total eclipses of the sun also the brighter stars become visible, and, taken in connection with the fixity of position of the pole-star, and the course of those circumpolar stars which never set in the latitudes of Greece, Egypt, and Chaldea, it soon became possible to frame a simple hypothesis which supposed the earth to be suspended in space, while at an unknown distance from it a crystal sphere revolved upon an axis indicated by the pole-star, and carried with it the whole host of heavenly bodies. This was the theory of Anaximander (540 B.C.), and it served as the starting-point for the more complex theory which continued to be held in various forms and with endless modifications down to the end of the sixteenth century.
It is believed that the early Greeks obtained some knowledge of astronomy from the Chaldeans, who appear to have been the first systematic observers of the heavenly bodies by means of instruments, and who are said to have discovered the cycle of eighteen years and ten days after which the sun and moon return to the same relative positions as seen from the earth. The Egyptians perhaps derived their knowledge from the same source, but there is no proof that they were great observers, and the accurate orientation, proportions, and angles of the Great Pyramid and its inner passages may perhaps indicate a Chaldean architect.
The very obvious dependence of the whole life of the earth upon the sun, as a giver of heat and light, sufficiently explains the origin of the belief that the latter was a mere appanage of the former; and as the moon also illuminates the night, while the stars as a whole also give a very perceptible amount of light, especially in the dry climate and clear atmosphere of the East, and when compared with the pitchy darkness of cloudy nights when the moon is below the horizon, it seemed clear that the whole of these grand luminaries—sun, moon, stars, and planets—were but parts of the terrestrial system, and existed solely for the benefit of its inhabitants.
Empedocles (444 B.C.) is said to have been the first who separated the planets from the fixed stars, by observing their very peculiar motions, while Pythagoras and his followers determined correctly the order of their succession from Mercury to Saturn. No attempt was made to explain these motions till a century later, when Eudoxus of Cnidos, a contemporary of Plato and of Aristotle, resided for some time in Egypt, where he became a skilful astronomer. He was the first who systematically worked out and explained the various motions of the heavenly bodies on the theory of circular and uniform motion round the earth as a centre, by means of a series of concentric spheres, each revolving at a different rate and on a different axis, but so united that all shared in the motion round the polar axis. The moon, for example, was supposed to be carried by three spheres, the first revolved parallel to the equator and accounted for the diurnal motion—the rising and setting—of the moon; another moved parallel to the ecliptic and explained the monthly changes of the moon; while the third revolved at the same rate but more obliquely, and explained the inclination of the moon's orbit to that of the earth. In the same way each of the five planets had four spheres, two moving like the first two of the moon, another one also moving in the ecliptic was required to explain the retrograde motion of the planets, while a fourth oblique to the ecliptic was needed to explain the diverging motions due to the different obliquity of the orbit of each planet to that of the earth. This was the celebrated Ptolemaic system in the simplest form needed to account for the more obvious motions of the heavenly bodies. But in the course of ages the Greek and Arabian astronomical observers discovered small divergences due to the various degrees of excentricity of the orbits of the moon and planets and their consequent varying rates of motion; and to explain these other spheres were added, together with smaller circles sometimes revolving excentrically, so that at length about sixty of these spheres, epicycles and excentrics were required to account for the various motions observed with the rude instruments, and the rates of motion determined by the very imperfect time-measurers of those early ages. And although a few great philosophers had at different times rejected this cumbrous system and had endeavoured to promulgate more correct ideas, their views had no influence on public opinion even among astronomers and mathematicians, and the Ptolemaic system held full sway down to the time of Copernicus, and was not finally given up till Kepler's Laws and Galileo's Dialogues compelled the adoption of simpler and more intelligible theories.
We are now so accustomed to look upon the main facts of astronomy as mere elementary knowledge that it is difficult for us to picture to ourselves the state of almost complete ignorance which prevailed even among the most civilised nations throughout antiquity and the Middle Ages. The rotundity of the earth was held by a few at a very early period, and was fairly well established in later classical times. The rough determination of the size of our globe followed soon after; and when instrumental observations became more perfect, the distance and size of the moon were measured with sufficient accuracy to show that it was very much smaller than the earth. But this was the farthest limit of the determination of astronomical sizes and distances before the discovery of the telescope. Of the sun's real distance and size nothing was known except that it was much farther from us and much larger than the moon; but even in the century before the commencement of the Christian era Posidonius determined the circumference of the earth to be 240,000 stadia, equal to about 28,600 miles, a wonderfully close approximation considering the very imperfect data at his command. He is also said to have calculated the sun's distance, making it only one-third less than the true amount, but this must have been a chance coincidence, since he had no means of measuring angles more accurately than to one degree, whereas in the determination of the sun's distance instruments are required which measure to a second of arc.
Before the discovery of the telescope the sizes of the planets were quite unknown, while the most that could be ascertained about the stars was, that they were at a very great distance from us. This being the extent of the knowledge of the ancients as to the actual dimensions and constitution of the visible universe, of which, be it remembered, the earth was held to be the centre, we cannot be surprised at the almost universal belief that this universe existed solely for the earth and its inhabitants. In classical times it was held to be at once the dwelling-place of the gods and their gift to man, while in Christian ages this belief was but slightly, if at all, changed; and in both it would have been considered impious to maintain that the planets and stars did not exist for the service and delight of mankind alone but in all probability had their own inhabitants, who might in some cases be even superior in intellect to man himself. But apparently, during the whole period of which we are now treating, no one was so daring as even to suggest that there were other worlds with other inhabitants, and it was no doubt because of the idea that we occupied the world, the very centre of the whole surrounding universe which existed solely for us, that the discoveries of Copernicus, Tycho Brahé, Kepler, and Galileo excited so much antagonism and were held to be impious and altogether incredible. They seemed to upset the whole accepted order of nature, and to degrade man by removing his dwelling-place, the earth, from the commanding central position it had always before occupied.
CHAPTER II
MODERN IDEAS AS TO MAN'S RELATION TO THE UNIVERSEThe beliefs as to the subordinate position held by sun, moon, and stars in relation to the earth, which were almost universal down to the time of Copernicus, began to give way when the discoveries of Kepler and the revelations of the telescope demonstrated that our earth was not specially distinguished from the other planets by any superiority of size or position. The idea at once arose that the other planets might be inhabited; and when the rapidly increasing power of the telescope, and of astronomical instruments generally, revealed the wonders of the solar system and the ever-increasing numbers of the fixed stars, the belief in other inhabited worlds became as general as the opposite belief had been in all preceding ages, and it is still held in modified forms to the present day.
But it may be truly said that the later like the earlier belief is founded more upon religious ideas than upon a scientific and careful examination of the whole of the facts both astronomical, physical, and biological, and we must agree with the late Dr. Whewell, that the belief that other planets are inhabited has been generally entertained, not in consequence of physical reasons but in spite of them. And he adds:—'It was held that Venus, or that Saturn was inhabited, not because anyone could devise, with any degree of probability, any organised structure which would be suitable to animal existence on the surfaces of those planets; but because it was conceived that the greatness or goodness of the Creator, or His wisdom, or some other of His attributes, would be manifestly imperfect, if these planets were not tenanted by living creatures.' Those persons who have only heard that many eminent astronomers down to our own day have upheld the belief in a 'Plurality of Worlds' will naturally suppose that there must be some very cogent arguments in its favour, and that it must be supported by a considerable body of more or less conclusive facts. They will therefore probably be surprised to hear that any direct evidence which may be held to support the view is almost wholly wanting, and that the greater part of the arguments are weak and flimsy in the extreme.
Of late years, it is true, some few writers have ventured to point out how many difficulties there are in the way of accepting the belief, but even these have never examined the question from the various points of view which are essential to a proper consideration of it; while, so far as it is still upheld, it is thought sufficient to show, that in the case of some of the planets, there seem to be such conditions as to render life possible. In the millions of planetary systems supposed to exist it is held to be incredible that there are not great numbers as well fitted to be inhabited by animals of all grades, including some as high as man or even higher, and that we must, therefore, believe that they are so inhabited. As in the present work I propose to show, that the probabilities and the weight of direct evidence tend to an exactly opposite conclusion, it will be well to pass briefly in review the various writers on the subject, and to give some indication of the arguments they have used and the facts they have set forth. For the earlier upholders of the theory I am indebted to Dr. Whewell, who, in his Dialogue on the Plurality of Worlds—a Supplement to his well-known volume on the subject—refers to all writers of importance known to him.
The earliest are the great astronomers Kepler and Huygens, and the learned Bishop Wilkins, who all believed that the moon was or might probably be inhabited; and of these Whewell considers Wilkins to have been by far the most thoughtful and earnest in supporting his views. Then we have Sir Isaac Newton himself who, at considerable length, argued that the sun was probably inhabited. But the first regular work devoted to the subject appears to have been written by M. Fontenelle, Secretary to the Academy of Sciences in Paris, who in 1686 published his Conversations on the Plurality of Worlds. The book consisted of five chapters, the first explaining the Copernican Theory; the second maintaining that the moon is a habitable world; the third gives particulars as to the moon, and argues that the other planets are also inhabited; the fourth gives details as to the worlds of the five planets; while the fifth declares that the fixed stars are suns, and that each illuminates a world. This work was so well written, and the subject proved so attractive, that it was translated into all the chief European languages, while the astronomer Lalande edited one of the French editions. Three English translations were published, and one of these went through six editions down to the year 1737. The influence of this work was very great and no doubt led to that general acceptance of the theory by such men as Sir William Herschel, Sir John Herschel, Dr. Chalmers, Dr. Dick, Dr. Isaac Taylor, and M. Arago, although it was wholly founded on pure speculation, and there was nothing that could be called evidence on one side or the other.
This was the state of public opinion when an anonymous work appeared (in 1853) under the somewhat misleading title of The Plurality of Worlds: An Essay. This was written, as already stated, by Dr. Whewell, who, for the first time, ventured to doubt the generally accepted theory, and showed that all the evidence at our command led to the conclusion that some of the planets were certainly not habitable, that others were probably not so, while in none was there that close correspondence with terrestrial conditions which seemed essential for their habitability by the higher animals or by man. The book was ably written and showed considerable knowledge of the science of the time, but it was very diffuse, and the larger part of it was devoted to showing that his views were not in any way opposed to religion. One of his best arguments was founded on the proposition that 'the Earth's Orbit is the Temperate Zone of the Solar System,' that there only is it possible to have those moderate variations of heat and cold, dryness and moisture, which are suitable for animal life. He suggested that the outer planets of the system consisted mainly of water, gases, and vapour, as indicated by their low specific gravity, and were therefore quite unsuitable for terrestrial life; while those near the sun were equally unsuited, because, owing to the great amount of solar heat, water could not exist on their surfaces. He devotes a great deal of space to the evidence that there is no animal life on the moon, and taking this as proved, he uses it as a counter argument against the other side. They always urge that, the earth being inhabited, we must suppose the other planets to be so too; to which he replies:—We know that the moon is not inhabited though it has all the advantage of proximity to the sun that the earth has; why then should not other planets be equally uninhabited?
He then comes to Mars and admits that this planet is very like the earth so far as we can judge, and that it may therefore be inhabited, or as the author expresses it, 'may have been judged worthy of inhabitants by its Maker.' But he urges the small size of Mars, its coldness owing to distance from the sun, and that the annual melting of its polar ice-caps will keep it cold all through the summer. If there are animals they are probably of a low type like the saurians and iguanodons of our seas during the Wealden epoch; but, he argues, as even on our earth the long process of preparation for man was carried on for countless millions of years, we need not discuss whether there are intelligent beings on Mars till we have some better evidence that there are any living creatures at all.
Several of the early chapters are devoted to an attempt to minimise the difficulties of those religious persons who feel oppressed by the immensity and complexity of the material universe as revealed by modern astronomy; and by the almost infinite insignificance of man and his dwelling-place, the earth, in comparison with it, an insignificance vastly increased if not only the planets of the solar system, but also those which circle around the myriads of suns, are also theatres of life. And these persons are further disquieted because the very same facts are used by sceptics of various kinds in their attacks upon Christianity. Such writers point out the irrationality and absurdity of supposing that the Creator of all this unimaginable vastness of suns and systems, filling for all we know endless space, should take any special interest in so mean and pitiful a creature as man, the imperfectly developed inhabitant of one of the smaller worlds attached to a second or third-rate sun, a being whose whole history is one of war and bloodshed, of tyranny, torture, and death; whose awful record is pictured by himself in such books as Josephus' History of the Jews, the Decline and Fall of the Roman Empire, and even more forcibly summarised in that terrible picture of human fiendishness and misery, The Martyrdom of Man; while their character is indicated by one of the kindest and simplest of their poets in the restrained but expressive lines:—