Полная версия
Ионы водорода лечат рак
Геннадий Алексеевич Гарбузов
Ионы водорода лечат рак
Посвящается моему сыну Александру
Кислород и водород в «дыхательной топке» организма
Считается, что особенность онкоклеток в том, что у них «сломаны» какие-то ферменты в цепочке цикла Кребса[1] и кислород из-за этого не утилизируется в митохондриях. Именно такой взгляд на проблему надолго загнал в тупик все дальнейшие поиски. По моему мнению, за основу следовало положить другое утверждение: недостаточная водородная напряженность в больных клетках вторично обусловливает слабую утилизацию кислорода. Усеченный процесс получения энергии клетки происходит не в митохондриях, а во внутриклеточной жидкости из-за ограниченного количества ферментов и снижения энергетической эффективности клетки в 18 раз. В норме усвоение кислорода и его сжигание полностью определяются противоположным процессом поставки протонов водорода.
Уровень насыщения водородом обусловливает степень потребления и активности кислорода. Без достаточного поступления из буферных систем водорода процесс усвоения кислорода будет неполноценным. Поэтому бессмысленно односторонне насыщать онкологические клетки кислородом. Любые методы увеличения его поступления к онкоклеткам не смогут усилить в них дыхательные процессы и завести механизмы «дыхательной топки».
Степень заряженности мембран клеток прямо пропорциональна мощности буферной системы. Степень заряда мембран клеток в первую очередь связана с «протонной помпой» мембран клеток или с так называемым натриево-калиевым насосом.
Заряд мембран обусловливается энергетикой клетки или активностью митохондрий. Активность последних регулируется на уровне ДНК митохондрий. Нарушение всей этой цепочки взаимоотношений, то есть переход на новый уровень гомеостаза клетки, возможен при нарушении программ регулирования, то есть из-за нарушений в ДНК митохондрий.
В то же время весь проанализированный мною информационный материал по усилению различными методами щелочной фазы свидетельствует о многочисленных случаях излечения онкологии. Казалось бы, что общего в многочисленных описанных методиках по ощелачиванию организма? Общее у всех – усиление водородного показателя внутри клетки (через увеличение емкости и мощности буферной системы), а значит, и усиление водородно-кислородной топки.
До сих пор многие ошибочно считают, что горение обусловлено кислородом. Но главную роль тут играет водород – именно он дает энергию горению, а не кислород.
К сожалению, этим неверным пониманием значения кислорода в дыхании и определяются неверные принципы понимания сути гликолиза онкоклеток. Первичную роль здесь играет не недостаточное потребление кислорода онкоклетками, а слабая накачка системы «топки» анионами водорода из-за слабого заряда мембран, а также недостаточной мощи буферной системы по воспроизводству анионов водорода. Последнее означает истощение резервов буферной системы и недостаточное противостояние всем экстремальным напорам на клеточном уровне.
При определенных ситуациях это может привести к переразряду мембран некоторых групп клеток, особенно находящихся в зонах риска, в связи с нагрузкой на них. Как результат создаются электрофизические предсостояния – предрасположенность клеток к проявлению патологий на самом нижнем иерархическом уровне пирамиды организма, то есть на уровне клеток, а не систем. В одном из диапазонов этих предсостояний на клеточном уровне появляется возможность онкологизации некоторых клеток.
В принципе, если бы этих предсостояний не было, то и не было бы возможным проявление онкологии. Именно это направление и является областью поисков в предотвращении онкологических заболеваний.
Следует признать, что первичные механизмы появления первых опухолевых клеток лежат в изменении заряда именно мембран митохондрий. В дальнейшем происходит устойчивое закрепление данного заряда на уровне вторичных перестроек в составе генетических трансформаций в митохондриях с последующим изменением ферментного состава. Митохондрии заводят энергетические процессы, а активность митохондрий запускает электрозаряд на их мембранах. В свою очередь заряд на мембранах определяет степень активности митохондрий. Оказалось, что первый эшелон регулировки деятельности митохондрий проходит не на химическом уровне, а на электрическом, затем на электрохимическом и химическом. Поэтому мы признаем, что на корректировку функций митохондрий, разблокировку их зацикленного состояния можно повлиять в первую очередь через электрофизические воздействия. Для этого ниже приведены соответствующие методики.
Значение анионов водорода в онкоклетках
Только практика служит критерием истины. Поэтому начну с описания эксперимента, который наглядно покажет значение анионов водорода в лечении раковых заболеваний, в чем я неоднократно убеждался в собственной лечебной деятельности.
Итак, перед нами два стеклянных ящика с одинаковой вентиляцией. В каждом уже целые сутки находится по тридцать белых мышей. Их поведение в ящиках разное. В контрольном, где циркулирует комнатный воздух, мыши чувствуют себя превосходно. В другом ящике, где комнатный воздух проходит через специальный электрический фильтр, задерживающий и нейтрализующий все электрозаряженные частицы воздуха (ионы и аэрозоли), мыши находятся в предсмертном состоянии – они задыхаются, мечутся, падают на спину и умирают от кислородного голодания. После вскрытия кислорода в их крови не обнаруживалось. Как же это может быть? Ведь в ящик подавалось большое количество воздуха. Мыши интенсивно дышали. Почему же они умерли от кислородного голодания? Неужели нейтрализация ничтожных по величине и количеству электрозарядов может остановить газообмен в легких? Как бы неправдоподобно ни звучал ответ, опыт подтверждает этот вывод. Да, может!
Для проверки этого явления ставились многократные дополнительные опыты. И каждый раз животные умирали в том ящике, где в воздухе были нейтрализованы все элекрозаряды ионов и аэрозолей. Значит, эксперименты позволяют сделать вывод: жизнь возможна только в ионизированной внешней среде.
В другом лабораторном опыте проверялось влияние искусственной ионизации кислорода воздуха на самочувствие животных. Мыши помещались в герметичные стеклянные ящики с достаточным количеством корма и воды. Таким образом выяснялось, сколько времени они могут прожить, используя только кислород воздуха, имеющийся в ящике.
По истечении нескольких часов количество кислорода воздуха, необходимое для нормальной жизни мышей, понижалось, после чего они впадали в состояние гипоксии со слабыми признаками жизни. Однако последующая аэроионизация оставшегося в ящике кислорода радикально меняла общее состояние и поведение животных. Проводивший опыты Л. Л. Васильев пишет:
«Животные, уже близкие к смерти от удушья, лежавшие неподвижно, с редким и неправильным дыханием, тотчас же после включения (в ящике) прибора для ионизации воздуха оправлялись, садились, нюхали воздух, принимались бегать по камере, причем дыхание у них вновь учащалось. Выключение ионизатора снова приводило мышей в состояние асфиксии. Вторичное включение (ионизации) опять поднимало их на ноги».
В результате проведенной серии опытов подтвердилось предположение, что отсутствие отрицательных электрозарядов в воздухе нарушает газообмен. Увеличение зарядов кислорода его усиливает. Вывод: жизнь в неионизированной среде невозможна.
Следует признать, что при онкологии наблюдается такой же эффект недостатка ионов водорода, как и в эксперименте с мышами, которым ограничили подачу анионов, но происходит это локально, лишь в пределах онкоклеток. Они тоже недополучают кислород, но не гибнут, а переходят на анаэробный (происходящий без участия кислорода) тип энергетики – гликолиз. Поэтому наша задача – доказать и показать, что существуют реальные пути лечения онкологических заболеваний.
Показано, что онкоклетки, даже в окружении кислорода, не употребляют его, а используют гликолиз, то есть поддерживают свою энергетику, обходясь без кислорода. В то же время становится очевидным, что процессы его усвоения в клеточных топках – это величина, определяемая показателями насыщенности их ионами водорода. При этом кислород в дыхательных процессах ведет к окислению, распаду субстрата, а водород – к его ощелачиванию и восстановлению.
Водород – это не только строительный элемент всего живого, но и основной поставщик (донатор) энергии, клеточное топливо и клеточный активатор, в том числе и для пластического метаболизма и дыхательных процессов. Кислород, наоборот, в своих реакциях является акцептором – отбирателем энергии. Поэтому кислотная фаза процессов метаболизма не может стимулировать энергодыхательные процессы. Заводить дыхательно-энергетические процессы может только водородно-щелочная фаза. При недостатке водорода процессы горения кислородом сдерживаются. Водород в качестве первичного вещества может усваиваться практически всеми органическими веществами и образовывать с ними структурные важнейшие элементы жизни – углеводороды, белки, жиры, кислоты и самое первое вещество – воду. Особенно высокая концентрация водорода с дополнительными электронами встречается в тех клетках, у которых наблюдается высокая потребность в энергии: это наши мускулы и органы.
Итак, именно благодаря электрону, который имеется на отрицательно заряженном ионе водорода, он и становится важнейшей единицей топлива в организме. Согласно физическим законам термодинамики, электрон располагает энергетической единицей в 1,3 электрон-вольта. По природе он обладает очень высоким энергетическим потенциалом.
Последствия недостатка ионов водорода
При недостаточном обеспечении отрицательно заряженным водородом организму начинает не хватать энергии – топлива внутри клетки, отрицательного потенциала, который побуждает ионный обмен, а значит, инициирует и клеточный обмен. Мы вместе со всем ученым миром слепо считаем, что причиной многих хронических заболеваний является плохое поступление кислорода в клетки, для чего разрабатываются многочисленные методики насыщения им организма. Теперь оказывается, что был проделан титанический сизифов труд – это ошибочный подход, поиск в неверном направлении, так как причина – в недостатке анионов водорода, провоцирующей ослабление энергетики клетки. Кислород нужен клеткам только для утилизации использованных и разряженных в митохондриях протонов водорода. Но мы знаем, что митохондрии у онкоклеток не работают. Поэтому энергетические процессы идут вне них и иным, усеченным путем, где кислород необязателен. Кислорода в среде достаточно, но он не нужен.
В таких условиях следует подозревать, что в онкоклетках количество протонов водорода повышено, так как он хоть и в меньших количествах (в 18 раз), но вырабатывается в цитозоле[2]. Однако здесь механизмы его гашения (нейтрализации) кислородом практически отсутствуют, и он вынужден накапливаться. Поэтому заряд мембран онкоклеток разряжен, а вокруг этих клеток создается кислая среда. Уместно задуматься о целесообразности активного отвода избытка протонов водорода от онкоклеток. В противном случае эти клетки будут находиться постоянно, как в мертвом болоте; при избытке мертвого заряда он будет накапливаться на клетках крови и лимфы и отводиться ими, поражая указанным зарядом весь организм и создавая условия для метастазов. В результате перенасыщения этим зарядом страдают иммунитет, клетки крови, печени и многие ткани, где он может оседать, нанося колоссальный вторичный вред организму. У больных начинается хроническая слабость и истощение всех защитных сил, в том числе и буферной системы. При этом могут создаваться условия, когда организм больше страдает не от основного опухолевого заболевания, а от вторичных его последствий.
Для этих целей нами и предложена методика «мостиков» из фольги, которые размещаются полосками как над областью опухоли с выходом полосок фольги за ее пределы, так и поодаль вдоль опухоли. Отведенные из региона опухоли протоны водорода рассеиваются по коже и утилизируются в здоровых тканях или рассеиваются в воздух. Заземление этих мостиков поможет более активно отводить эти протоны. Очень важно, чтобы они не скапливались и в квартире, где живут пациенты, так как в замкнутом пространстве могут быстро откачивать из нас анионы. Скапливаться они могут на всем, особенно на линолеуме, пластмассах, шторах, приборах и даже на лакированной мебели, то есть везде, где нет отвода их через заземление. Вся наша современная жилищная среда обитания (продукт достижения цивилизации) тотально предрасполагает к онкологизации. Конечно, оптимально было бы проживание в максимально естественных условиях, а еще лучше – где-то на природе. Будет уместным напомнить народные рекомендации онкобольным ходить рано утром босиком по росе по траве, ведь это способ максимального отвода из организма протонов и подзарядки его анионами.
Другие последствия недостатка ионов водорода: ослабление иммунной системы и повышенная восприимчивость к инфекционным заболеваниям, особенно простудным, таким как грипп, инфекции мочевых путей и болезни дыхательных путей. Если речь идет о длительном недостатке анионов водорода, а также витаминов и минеральных веществ, то болезни цивилизации начинают постепенно подавлять сопротивление организма, что приводит к риску возникновения атеросклероза, артрита, астмы, диабета и рака.
Пути доставки анионов водорода в клетки
Кислород к клеткам поставляется через систему легких и гемоглобин крови. Доставка ионов водорода совсем иная.
В-первых, он вырабатывается клетками в процессе метаболизма и упаковывается в виде кофермента[3] NADH, который является переносчиком отрицательно заряженного иона водорода. На нем находится дополнительный электрон, который доставляет часть энергии. Таким образом, этот дополнительный электрон можно рассматривать как важнейшую единицу топлива в организме. Но очевидно, что упакованный в NADH анион водорода не способен утилизировать кислород для гашения протонов в результате энергетической реакции. Напомню эксперимент с мышами, которые находились в камере с достаточным количеством кислорода, но не могли его использовать и задохнулись. При этом эндогенные анионы им не помогли, а для восстановления дыхания нужны были только анионы, полученные извне. Очевидно, что и при онкологии свои внутриклеточные анионы тоже не помогут, и проблему можно будет решать только за счет усиления поступления внешних анионов, чтобы вернуть онкоклеткам способность использовать кислород.
Во-вторых, водород появляется в период любого электролитного ощелачивания субстрата буферной системы минералами, что автоматически приводит к повышению водородного показателя за счет амфотерности[4] системы. При любом изменении рН среды происходит мгновенная корректировка с целью сохранения гомеостаза и, при переощелачивании системы, отдачи ею ионов водорода. Но очевидно, что этого количества в норме недостаточно, чтобы влиять на общее дыхание, а тем более – на клеточное дыхание.
В-третьих, поставщиками ионов водорода являются антиоксиданты. В то же время водород имеет большое значение в антиоксидантных механизмах лечения. Крошечные, почти не имеющие массы анионы водорода могут беспрепятственно проникать во все биологические системы и там без проблем предлагать свои электроны свободным радикалам, насыщать мощь буферной системы жидких сред, поднимать в ней водородную напряженность. Все органы омываются достаточным количеством жидкости, содержащей сильную амфотерную буферную среду, состоящую в первую очередь из уравновешенного и автоматически регулируемого соотношения бикарбонатов и углекислот, переходящих динамически из одного состояния в другое. Только это и может обеспечивать требуемый уровень водорода с дополнительным электроном, которые позволяют выводить все выделения и освобождать организм от ядов. Ощелачивание и наполнение через «буферные меха» водородом облегчает любую интоксикацию организма, в том числе и онкологическую.
Во-четвертых, подача ионов водорода возможна напрямую через все ткани и клетки из воздуха. Причем наша задача – показать возможность поставки ионов водорода в организм не только в виде аэронов через легкие, где они облегчают усвоение кислорода из воздуха, но и напрямую трансдермально (через кожу), наполнять ими все ткани организма, и прежде всего онкологические. Проникая из воздуха, ионы заряжают мембраны клеток и легко переносятся по всему организму, насыщая в первую очередь те ткани, которые имеют недостаточный соответствующий заряд. А таковыми в первую очередь являются онкологические клетки.
Электрон ни в коем случае свободно не парит и не блуждает, как призрак, по организму. Напротив, его «носит на своей спине» водород. Это соединение возникает из-за того, что атомарный водород принимает свободный электрон с отрицательным зарядом и превращается, таким образом, в отрицательно заряженный водород Н—. Упрощенно можно говорить только об отрицательно заряженном водороде, если имеется в виду собственно энергия дополнительного электрона. Так как именно эта суперкомбинация из водорода и дополнительного электрона доставляет нашему организму клеточное топливо.
Поэтому заряжать буферы можно не только с помощью насыщения электролитной системы легко водорастворимыми солями, лучше всего в виде бикарбонатов, но также с помощью прямой поставки ионов водорода, например благодаря электрогальваническому душу. Кстати, потенциальные и еще не разработанные возможности последнего метода намного шире всех остальных путей. Поэтому я вижу именно на этом направлении максимальные перспективы в лечении рака.
Какое значение имеет кислород в онкологических клетках?
История вопроса
Вся предшествующая история изучения особенностей энергетики онкоклетки связана с попытками обосновывать ее исходя из отношений их к кислороду. Так, известный исследователь Варбург в 1927 г. писал о высокой степени гликолиза[5] в опухолях. Он же выдвинул положение: «Без гликолиза нет роста опухоли». Опухоли хорошо развиваются при отсутствии кислорода, если есть глюкоза.
Точнее говоря, особенность онкоклеток заключается в повышении скорости гликолиза (как аэробного, так и анаэробного) и увеличении продукции лактата[6]. Характерная для многих опухолей повышенная секреция лактата получила название «эффект Варбурга». Анаэробный гликолитический способ энергообразования в здоровом организме человека применяется ограниченно, как резервный выход, всегда сопровождается перерасходом энергетического сырья и смертельно опасным закислением нашего организма.
Затем появились данные профессора Поппа, который показал, что злокачественные клетки, как и анаэробные патогенные бактерии и вирусы, не могут жить в присутствии кислорода. Это обнадеживало и предполагало пути поиска усиления подачи кислорода в онкоклетки в лечебных целях. Однако это было ошибкой лауреата Нобелевской премии. В дальнейшем появились работы, показывающие, что онкологические клетки даже в присутствии кислорода не способны им воспользоваться (аэробный гликолиз). Изменение энергетики в раковых клетках по-иному называют нарушением «эффекта Пастера». Все живые ткани, являющиеся метаболически активными, способны к анаэробному гликолизу, однако большинство их не гликолизирует в аэробных условиях. Эффект блокирования гликолиза со стороны дыхания и получил название «эффект Пастера».
Однако и это не давало объяснения сути проблемы. Оказалось, что для опухолевой клетки характерно отсутствие эффекта Пастера: анаэробное расщепление глюкозы не только идет в присутствии кислорода, но и тормозит тканевое дыхание. Это так называемый обратный пастеровский эффект (эффект Кребтри). Именно Кребтри окончательно подтвердил, что для онкоклеток проблемы с кислородом вообще не имеют никакого значения. Они свободно существуют в его присутствии.
Следовательно, нарушенная энергетика онкоклетки связана не с кислородом, а с водородом. Вернее, с неспособностью пропускать его через энергетическую топку цикла Кребса. Это может
произойти, когда электрозаряд на мембранах митохондрий настолько слаб, что становится невозможным запускать стартерные электрические механизмы работы митохондрий. Проблема, оказывается, в неверном заряде их мембран, связанном с нарушением в голограмме всего зарядомагнитного каркаса клетки. Энергоинформационная матрица онкоклетки нарушена, а это имеет значение для поддержания парциального давления ионов водорода, входящих через мембраны в митохондрии. Они попросту разряжены.
Вторично происходит слом сенсорных механизмов и разрыв ферментных цепочек, то есть имеет место отсутствие неких ферментов в цепочке и утрата чувствительности генома митохондриальной ДНК на определенный состав субстратного поля в цитозоле.
Однако парциальное давление анионов водорода в жидкой среде можно увеличивать в разы, если не на порядок. Такое увеличение насыщенности субстрата водородом в жидком цитозоле клетки позволяет запустить те же механизмы затягивания кислорода внутрь клетки и его использования в ней, которые в данном случае действуют обходным путем, то есть непосредственно в цитозоле клетки, даже при условии отсутствия надлежащих для этого ферментов в митохондриях. Таким образом, в клетке запускаются иные дыхательные процессы, что автоматически отключает гликолизные. Меняется субстратное поле цитозоля. При отключении гликолизных процессов в клетке подключаются многочисленные программы нормальных клеток, в том числе программы их апоптоза[7] и постепенной репарации разорванной ферментной цепи, а также сенсорных механизмов мембран, чувствительности митохондрий к составу их субстратного поля.
Высокодифференциальная активность клеток невозможна в условиях недостаточного вывода продуктов жизнедеятельности клетки. Особенность онкоклеток в том, что их межклеточная жидкость чрезмерно токсична и окислена, что только способствует процветанию болезни. Подвод щелочных минералов в виде бикарбонатов буферной системы, а значит, и водорода расчищает ее и облегчает возможность восстановления среды онкоклеток и репаративных процессов в них.
Также это позволяет восстановить недостаточный заряд мембран онкоклеток, что сдерживает их склонность к метастазированию и делает видимыми для иммунитета.
Дыхательный процесс возможен и в отсутствие кислорода (гликолиз), но в отсутствие анионов водорода энергетические процессы невозможны. Чем сильнее буферная насыщена емкость анионами водорода, тем сильнее задействуются каталитические процессы дыхания. Если слабый кремень не может зажечь огонь, то мощной искре сделать это легче. Так же и в онкоклетках – механизмы зажигания ослаблены и огонь тухнет, рост зажигающего потенциала усиливает возгорание, а также и дыхательные процессы.
Поэтому важнейшей задачей становится добиться любыми путями резкого усиления насыщенности всей системы анионами водорода и восстановления зарядомагнитного каркаса клеток.
В свою очередь, накопление анионов водорода равноценно ощелачиванию среды, а накопление протонов водорода равноценно окислению среды. Это два крыла единого процесса баланса электрозарядов среды и их обмена. Можно провести аналогию с заряженностью автомобильного аккумулятора. Но при онкологии необходимо не просто зарядить пластины аккумулятора, а создать в нем некое превышение заряда, чтобы вернуть в норму «пробитые» пластины и привести его в рабочее положение. Повышение в системе анионов водорода приведет к ускорению энергетических процессов, в том числе и в онкоклетках, а значит, автоматически повысится количество отработанных протонов и усилится их утилизация кислородом. Приостановленные электрические процессы в онкоклетках опять восстановятся, а за ними вслед и многие химические и ферментные процессы. Разорвется порочный замкнутый круг, и создадутся условия для репарации онкоклеток.
Случай исцеления от саркомы
С. Скаков описывает излечение девушки, которая была больна крупной саркомой сустава. Фотографии рентгенограммы показали, что кость буквально растворилась в опухоли, ее практически не было. До этого больная прошла ряд курсов химической и лучевой терапии, оставался последний шанс – полная ампутация конечности, так как остальные способы лечения считались бесполезными, но пациентка отказалась.
Впервые в медицинской практике был поставлен эксперимент, в котором предполагалось, что раковые клетки «не любят кислород», но для этого нужны особо завышенные его количества. В течение нескольких месяцев применение ВЛГД не приводило к видимому эффекту. Тогда было решено увеличить время задержки дыхания до 3 минут. (Дыхательный цикл: пауза, 10 вдохов-выдохов и снова пауза.)
Чтобы достичь необходимой длительности задержки дыхания, больная целый месяц занималась с утра до вечера, спала по 4–5 часов, делала перерывы лишь на прием пищи.