bannerbanner
Самые знаменитые ученые России
Самые знаменитые ученые России

Полная версия

Самые знаменитые ученые России

Язык: Русский
Год издания: 2008
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 5

Мы можем лишь утверждать, указывал академик Александров, что геометрия Евклида является некоей идеализацией действительных пространственных соотношений, вполне удовлетворяющих нас, пока мы имеем дело с «кусками пространства не очень большими и не очень малыми», то есть пока мы не выходим ни в ту, ни в другую сторону слишком далеко за пределы наших обычных, практических масштабов, пока мы, с одной стороны, скажем, остаемся в пределах нашей Солнечной системы, а с другой, не погружаемся чересчур глубоко в глубь атомного ядра.

«Поверхности и линии не существуют в природе, а только в воображении, – писал сам Лобачевский. – Они предполагают, следовательно, свойство тел, познание которых должно родить в нас понятие о поверхностях и линиях».

Положение меняется только тогда, когда мы переходим к космическим масштабам.

Например, современная общая теория относительности рассматривает геометрическую структуру пространства как нечто зависящее от действующих в этом пространстве масс и приходит к необходимости привлекать геометрические системы, являющиеся «неевклидовыми» в гораздо более сложном смысле этого слова, чем тот, который обычно связывается с геометрией Лобачевского.

Лобачевский убедительно показал, что наша геометрия есть всего лишь одна из нескольких логически равноправных геометрий, одинаково безупречных, одинаково полноценных логически, одинаково истинных в качестве математических теорий.

В этом смысле вопрос о том, какая из геометрий истинна, то есть наиболее приспособлена к изучению того или иного круга физических явлений, есть вопрос только физики, а не математики, и притом вопрос, решение которого не дается раз навсегда евклидовой геометрией, а зависит от того, каков избранный нами круг физических явлений. Единственной привилегией евклидовой геометрии при этом остается лишь то, что она была и продолжает оставаться математической идеализацией нашего повседневного пространственного опыта и поэтому, конечно, сохраняет свое основное положение как в значительной части механики и физики, так и в технике.

Профессора И. М. Симонов, А. Я. Купфер и адъюнкт Н. Д. Брашман, которым первым пришлось рассматривать сочинение Лобачевского, высказались о нем довольно пренебрежительно. А опубликованный Лобачевским мемуар «О началах геометрии» вообще подвергся резкой критике журналистов.

«Даже трудно было бы понять и то, каким образом г. Лобачевский из самой легкой и самой ясной в математике, какова геометрия, мог сделать такое тяжелое, такое темное и непроницаемое учение, – возмущался один из них. – Для чего же писать, да еще и печатать такие нелепые фантазии?»

При жизни Лобачевского один только профессор Казанского университета П. И. Котельников публично решился оценить работу Лобачевского положительно, да в 1842 году он был выбран членом-корреспондентом Геттингенского королевского общества по рекомендации великого математика К. Ф. Гаусса, весьма высоко оценившего его работу. Известно, что Гаусс был настолько ею заинтересован (он прочел ее немецкий перевод), что даже собирался изучить русский язык, чтобы прочесть работу Лобачевского в оригинале.

Интерес Гаусса к работе Лобачевского имел под собой вполне реальную основу. Еще в 1818 году Гаусс подошел к мысли о возможности неевклидовой геометрии, однако, немецкое здравомыслие Гаусса, всяческие опасения, что высказанные им идеи не будут поняты, что они ударят по его научной репутации, привели Гаусса к тому, что он оставил их разработку.

К сожалению, этого не знал венгерский математик Больай.

В 1825 году, проходя службу в небольшой крепости Темешвер, этот молодой венгерский лейтенант, занимаясь математикой, тоже пришел к основным положениям неевклидовой геометрии. Правда, по тем же соображениям, что и Гаусс, он тоже не решился обнародовать свои идеи. Кстати, отец венгерского математика, сам математик, зная об увлечении сына, откровенно призывал его держаться от постулата Евклида как можно дальше. «Ты должен отвергнуть это подобно самой гнусной случайной связи! – писал он сыну. – это может лишить тебя всего твоего досуга, здоровья, покоя, всех радостей жизни. Эта черная пропасть в состоянии, быть может, поглотить тысячу таких титанов, как Ньютон, на земле это никогда не прояснится…»

Рассматривая постулат Евклида как независимую аксиому, Больай пришел к убеждению, что можно построить геометрию, основанную на аксиоме, согласно которой через точку на плоскости можно провести бесконечное множество прямых, не пересекающих данную прямую плоскости. Не зная о том, что идея эта уже подробно рассматривалась Лобачевским и Гауссом, Больай в 1832 году напечатал свои соображения в виде приложения к книге своего отца под названием «Приложение, излагающее абсолютно верное учение о пространстве». Гаусс, получив работу венгра, разочаровал его, заявив, что приоритет данного открытия ни в коей мере не может ему принадлежать. Это убило Больай, он никогда больше не печатал никаких математических работ.

В 1846 году Лобачевский вынужден был покинуть занимаемую им кафедру, поскольку отслужил в университете тридцать лет.

К тому времени, кроме «мнимой» геометрии, Лобачевский был известен многими работами в области математического анализа, алгебры, теории вероятностей. Совет Казанского университета ходатайствовал о сохранении за Лобачевским занимаемых должностей, но Министерство народного образования наложило на ходатайство отказ. В результате Лобачевский был переведен на место помощника попечителя Казанского учебного округа.

Лобачевский тяжело переживал свое отстранение от дел университета.

Впрочем, в большом имении, куда ученый окончательно удалился, он ни минуты не оставался в праздности. Он построил новый дом и пристроил к нему флигель, возвел новые амбары и каретники, каменную ригу и овчарню, разбил обширный сад, придумал оригинальные ульи, построил плотину и водяную мельницу и даже ввел особую, придуманную им самим, систему травосеяния.

«Жить, – говорил он раньше, – значит чувствовать, наслаждаться жизнью, чувствовать непременно новое, которое бы напоминало, что мы живем».

К сожалению, теперь, полуслепой, рано одряхлевший, он чувствовал себя всеми оставленным. А последнюю свою работу – «Пангеометрия» – он вынужден был диктовать, потому что ему окончательно изменило зрение.

12 февраля 1856 года Лобачевский умер.

Последние слова, которые он произнес, были: «Человек родится, чтобы умереть». В этих словах Лобачевского, несомненно, сказалась печаль последних одиноких лет.

Известный русский ученый А. Л. Чижевский посвятил Лобачевскому такие стихи.

Отважный зодчий и ваятельИ враг Евклида – постоянства.Бессмертный преобразовательМногоструктурного пространства.Пространство наше было куцо,Но он пришел к великой целиИ доказал: пересекутсяИ параллели к параллелям, —Пусть далеко, но непременно;И вот из нового НачалаГармония иных ВселенныхУму нежданно зазвучала, —Вселенных энных измерений:Цветут поля, бегут потоки,Восходят тензорные тени,Гремят источники и стоки.Так пали лживые покровыИ, неразгаданный от века,Мир развернулся в духе новомПред умозреньем человека.Прозрел он тьмы единослитыхПространств в незыблемости узкой,Колумб Вселенных тайноскрытых,Великий геометр русский.

Михаил Васильевич Остроградский

Математик, механик.

Родился 12 сентября 1801 года в селе Пашенном, Кобелякского уезда Полтавской губернии.

Первоначальное образование Остроградский получил в пансионе при Полтавской гимназии, называвшемся «Домом для воспитания бедных дворян», а затем в самой гимназии.

Мечтой Остроградского было стать военным.

В 1816 отец повез Остроградского в Петербург для зачисления в один из гвардейских полков, но по настоятельному совету одного из близких родственников, заметившего склонность юноши к математике, его определили в Харьковский университет. Но это нисколько не отбило у него охоту стать военным. Пусть не гвардеец, но все равно военный! – Остроградский готов был даже смириться с незавидным положением провинциального пехотного или артиллерийского офицера. Лишь к концу второго года обучения в нем по-настоящему проснулся интерес к математике. Это случилось, когда он перешел жить на квартиру своего преподавателя Павловского.

В 1820 году Остроградский с блеском сдал все необходимые для окончания университета экзамены. За отличные знания ректор Харьковского университета предложил присудить Остроградскому степень магистра, но в итоге Остроградский не получил даже диплома, поскольку выяснилось, что за все время учебы он ни разу не посетил обязательных лекций по богословию.

Нисколько не обескураженный случившимся, в мае 1822 года Остроградский уехал в Париж, где с громадным интересом слушал лекции знаменитых французских математиков О. Коши, П. Лапласа, Ж. Фурье. В Париже в 1825 году Остроградский выполнил первую самостоятельную работу «О волнообразном движении жидкости в цилиндрическом сосуде». Будучи подана в Парижскую академию наук эта работа была одобрена и опубликована.

Жизнь в Париже была не дешевой.

Занимаясь наукой, Остроградский одновременно преподавал в колледже.

Это, конечно, мешало научной работе, но характер ученого был прост. Математика для него была не прибежищем, не условным местом, где можно было спрятаться от мира, а напротив, главным делом жизни. Соответственно, и сам предмет занятий накладывал отпечаток на характер Остроградского.

Гораздо позже, касаясь особой притягательной силы математики, некоего скрытого ее волшебства, математик А. Я. Хинчин писал:

«В обывательских тяжбах всякого каждая из спорящих сторон исходит, как правило, из желательного ей, выгодного для нее решения вопроса и с большей или меньшей изобретательностью изыскивает возможно более убедительную аргументацию для решения вопроса в свою пользу. В зависимости от эпохи, среды и содержания спора стороны при этом апеллируют к тому или другому высшему авторитету – общечеловеческой морали, естественному праву, священному писанию, юридическому кодексу, действующим правилам внутреннего распорядка, а часто и к высказываниям отдельных авторитетных ученых или признанных политических руководителей. Все мы много раз наблюдали, с какой страстностью ведутся подобные споры. Одна только математическая наука полностью от всего этого избавлена. Каждый математик рано привыкает к тому, что в его науке всякая попытка по тем или иным мотивам действовать тенденциозно, заранее склоняясь к тому или другому решению вопроса и прислушиваясь только к аргументам, говорящим в пользу избранного решения, – всякая такая попытка заведомо обречена на неудачу, и ничего, кроме разочарования, пытающемуся принести не может. Поэтому математик быстро привыкает к тому, что в его науке выгодна только правильная, объективная, лишенная всякой тенденциозности аргументация».

В ноябре 1827 года Остроградский вернулся в Россию.

В 1828 году его избрали адъюнктом Петербургской Академии наук, а в 1831 – ординарным академиком по отделу прикладной математики.

Занимаясь наукой Остроградский много времени отдавал преподаванию.

С 1828 года он являлся профессором офицерских классов Морского кадетского корпуса, с 1830 года – профессором Института корпуса инженеров путей сообщения, с 1832 года – профессором Главного педагогического института, а с 1840 года – Главного инженерного училища, наконец, с 1841 года он – профессор Главного артиллерийского училища в Петербурге.

Общаясь со слушателями, Остроградский стремился демонстрировать им самые последние достижения науки. В Институте инженеров путей сообщения, он, например, рассказывал о только что появившихся работах Абеля по алгебраическим функциям и об исследованиях Штурма относительно отделения корней алгебраических уравнений – о так называемой теореме Штурма. Не случайно из многочисленных слушателей Остроградского вышли такие известные ученые, считавшие себя его учениками, как И. А. Вышнеградский, Н. Н. Петров, Н. С. Будаев, Н. Ф. Ястржембский, В. Н. Шкляревич, П. Л. Лавров, Д. И. Журавский, И. П. Колонг и другие.

Основные работы Остроградского относятся к математическому анализу, теоретической механике, математической физике. Известен он многочисленными работами по теории чисел, алгебре, геометрии, теории вероятностей, баллистики. Им была решена важная задача о распространении волн на поверхности жидкости, заключенной в бассейне, имеющем форму круглого цилиндра. Оценивая работы Остроградского, известный механик и математик Н. Е. Жуковский писал, что «…они захватывают собою почти всю область, на разрешении которой сосредотачивались в то время мысли выдающихся европейских геометров. В тот период расцвета прикладных наук, когда прогресс математических знаний дал сразу возможность разрешить целый ряд существенных вопросов естествознания, мы часто встречаемся с однородными работами выдающихся мыслителей. Нам, русским, отрадно отметить теперь, что в это время деятельности Фурье, Коши, Пуассона, Якоби и Гаусса мы не остались в стороне, так как имели Остроградского».

В работах по теории распространения тепла в твердых телах и в жидкостях Остроградский получил дифференциальные уравнения распространения тепла и одновременно пришел к ряду важнейших результатов в области математического анализа: нашел формулу преобразования интеграла по объему в интеграл по поверхности (так называемая формула Остроградского-Гаусса). Он ввел понятие сопряженного дифференциального оператора, доказал ортогональность собственных функций данного оператора и сопряженного, установил принцип разложимости функций в ряд по собственным функциям и принцип локализации для тригонометрических рядов. Стоит отметить, что теория распространения тепла в жидкости впервые была построена именно Остроградским, так как предыдущие исследования французских математиков Ж. Фурье и С. Пуассона были основаны ими на ошибочных предпосылках. Занимался Остроградский также вопросами упругости, небесной механики, теории магнетизма.

Установленная Остроградским в 1828 году формула преобразования интеграла по объему в интеграл по поверхности была обобщена им в 1834 году на случай n-кратного интеграла. При помощи этой формулы он нашел вариацию кратного интеграла. В работе «О преобразовании переменных в кратных интегралах», выполненной в 1836, а опубликованной в 1838 году, он дал вывод (излагаемый теперь во всех учебниках математического анализа) правила преобразования переменных интегрирования в двойных и тройных интегралах. Один из частных результатов, полученных Остроградским в теории интегрирования рациональных функций, – выделение рациональной части интеграла (метод Остроградского) – также излагается в учебниках.

В теоретической механике Остроградскому принадлежат фундаментальные результаты, связанные с развитием принципа возможных перемещений, вариационных принципов механики, а также с решением ряда частных задач.

В «Мемуаре об общей теории удара» (1854) Остроградский впервые дал общий метод определения скоростей точек какой угодно системы при ударе о неупругую связь, то есть построил общую теорию удара.

Общий вариационный принцип почти одновременно был высказан в 40-х годах XIX века для консервативных систем – известным английским математиком У. Гамильтоном, а для неконсервативных систем – Остроградским. В мемуарах «Об интегралах общих уравнений динамики» (1848) и «О дифференциальных уравнениях в проблеме изопериметров» (1850) Остроградский обобщил эти результаты на общую изопериметрическую задачу вариационного исчисления. Сколь существенны были полученные Остроградским результаты, можно судить по тому, что известный его мемуар о вычислении вариаций кратких интегралов, напечатанный в 1834 году в изданиях Российской академии наук, в 1861 году появился в полном переводе как приложение к книге английского математика и историка математики Тотгентера, посвященной истории развития вариационного исчисления.

Очень важными оказались работы Остроградского по баллистике.

В «Мемуаре об определенных квадратурах» (1839) он составил специальные таблицы для облегчения вычисления параметров полета артиллерийского снаряда. Огромный практический интерес представили работы Остроградского, посвященные выяснению влияния выстрела на лафет орудия. В постоянном интересе к подобным работам, несомненно, сказалась юношеская нереализованная мечта ученого стать военным.

Критерием ценности математических исследований для Остроградского всегда служила практика, возможность незамедлительно использовать полученные результаты в практической деятельности. В этом отношении очень характерны его исследования по теории вероятностей. Кстати, одно из них, являющееся началом статистических методов браковки, было вызвано к жизни прямой необходимостью облегчить работы по проверке товаров, поставляемых армии.

Остроградский написал множество популярных статей и педагогических исследований. Ему принадлежат превосходные для своего времени учебники – «Пособие начальной геометрии», «Курс небесной механики», «Лекции алгебраического и трансцендентного анализа», «Программа и конспект тригонометрии для военно-учебных заведений». Он – один из основателей петербургской математической школы, академик с 1830 года.

За научные заслуги Остроградский был избран действительным членом Академии наук в Нью-Йорке (1834), Туринской академии (1841), Национальной академии Деи Линчеи в Риме (1853), членом-корреспондентом Парижской Академии наук (1856).

Умер Остроградский 20 декабря 1861 года в своем поместье под Полтавой.

Василий Яковлевич Струве

Астроном, геодезист.

Родился 4 апреля 1793 года в небольшом местечке Хорст недалеко от города Альтоны, принадлежавшем в то время Дании.

Рано проявил математические способности.

Закончив Альтонскую гимназию, собрался поступить в академическую двухлетнюю гимназию, но в это время большую часть Западной Европы оккупировали войска Наполеона. Однажды рослого юношу Вильгельма Струве (Василием его стали называть позже, когда он перебрался в Россию) схватили французские вербовщики. Будучи сильным и ловким, Струве вырвался и выпрыгнул в окно второго этажа, избавившись таким образом от невеселой участи наемного солдата.

В августе 1808 года Струве с большими трудностями добрался до русского университетского городка Дерпта, в котором жил его старший брат Карл.

Короткого собеседования оказалось достаточно, чтобы Струве был принят в Дерптский университет.

Учился он на философском отделении, где работала так называемая филологическая семинария. Правда, в этом сказались не столько интересы самого Струве, сколько добрый житейский совет отца: получи университетский диплом, а уж дальше решай, чем тебе, собственно, заниматься.

Несмотря на сложности, связанные с необходимостью самостоятельно зарабатывать средства на жизнь, несмотря даже на временное отчисление Струве с курса за «уклонение от учебных занятий», в 1810 году он с отличием окончил Дерптский университет, а его сочинение, посвященное филологическим работам ученых Александрийской школы было удостоено золотой медали и рекомендации издать ее за счет университета.

На окончательный выбор будущей профессии больше всего повлияли на Струве астрономические лекции И. В. Пфаффа и лекции по физике Г. Ф. Паррота. Проходя практику в Дертской обсерватории Струве настолько увлекся геодезическими работами, что на собственные деньги приобрел секстант Троутона. В 1812 году на съемках в окрестностях городка Загница, он был схвачен солдатами, принявшими его за французского шпиона. Только в Пярну, куда Струве был доставлен солдатами, недоразумение разъяснилось.

В 1813 году Струве защитил магистерскую диссертацию на тему «О географическом положении Дерптской обсерватории». В том же году он был назначен экстраординарным профессором Дерптского университета, а одновременно астрономом-наблюдателем обсерватории.

Звездное небо навсегда стало объектом его работ.

«Когда три года тому назад, – писал Струве в 1817 году, – я был назначен наблюдателем Дерптской обсерватории, я долго и серьезно обдумывал вопрос, не позволит ли мне даже тогдашнее состояние обсерватории предпринять ряд наблюдений, могущих обогатить наши знания звездного неба. При этом я хотел настолько усовершенствоваться в производстве астрономических наблюдений, чтобы впоследствии, когда обсерватория получит желаемые средства, вполне быть подготовленным, благодаря приобретенной опытности, избирать всегда наилучшие способы наблюдений. Полагаю, что всякий, кому дорого процветание науки, обязан оному содействовать по мере своих сил».

В 1818 году Струве был назначен директором Дерптской обсерватории.

Побывав в обсерваториях Гамбурга, Бремена, Лилиенталя, Геттингена, Зееберга, Берлина и Кенигсберга, молодой ученый установил прочные личные связи с виднейшими астрономами того времени: Ольберсом в Бремене, Шретером в Лилиентале, Гауссом и Гардингом в Геттингене, Линденау и Николаи в Зееберге, Боде в Берлине и Бесселем в Кенигсберге. Это позволило Струве постоянно держать под контролем все научные и технические дела, так или иначе связанные с Дерптской обсерваторией.

«На многократные запросы мои к Рейхенбаху, – обращался Струве в 1820 году в Совет университета, обосновывая необходимость очередной заграничной поездки, – о том, в какой мере подвинулось изготовление нашего (заказанного обсерваторией) инструмента, я не получил от него никакого ответа. Я начинаю опасаться, что многочисленные официальные занятия этого человека, как горного и соляного советника, быть может так отвлекают его от занятий механикой, что инструмент будет изготовлен лишь через много лет или даже вовсе не будет выполнен. Опыт показал, как трудно бывает часто получить инструменты от выдающихся художников и одна обсерватория, постройка которой потребовала больших расходов, не проявила значительной деятельности потому, что механики не доставили инструментов. Так, обсерватория в Зееберге существует уже 20 лет и до сих пор не имеет меридианного круга, хотя последний и был заказан Цахом, одновременно с Пиацци, у Рамсдена в Лондоне. Пиацци получил свой инструмент, потому что, для достижения цели, не побоялся не только путешествия в Лондон, но и продолжительного пребывания в этом городе».

«Когда обсерватория, – писал Струве в одном из отчетов, – получит Рейхенбахов полуденный круг и останутся в ней со временем инструменты, нужные для тригонометрического измерения (эти инструменты Струве заказал в Финляндии), тогда она в рассуждении измерительных инструментов не уступит ни одной в Европе обсерватории. В ней будет недоставать только одного из больших телескопов, каковые находятся теперь в Мюнхене, и приобретением какового, аппарат ее сделался бы превосходнее почти всех обсерваторий в Европе: ибо при значительных ценах тех огромных телескопов немногие из них в состоянии приобрести оные покупкою. Посредством такого колоссального ахроматического телескопа, который в рассуждении оптической силы может быть сравниваем только с огромными телескопами Гершеля, и, относительно яркости должен быть предпочтен оным, можно бы, без сомнения, очень много нового открыть на небе и таковые открытия послужили бы к славе сей обсерватории и к пользе астрономических наук. Один только Фраунгофер мог произвести такие телескопы; и очень сомнительно, чтобы он, после сих двух инструментов, совершенно оконченных в существенных их частях, предпринял когда-либо опять столь же большие телескопы: ибо они требуют много времени и великих издержек, и художник не может делать из них прибытка, но единственно для пользы науки».

В итоге многих стараний Струве Дерптская обсерватория превратилась в один из самых известных астрономических центров Европы.

В 1827 году Струве опубликовал каталог двойных и кратных звезд, в котором из 3112 объектов 2343 были открыты им самим в результате тщательного просмотра 120 000 звезд. В 1837 году вышел труд Струве «Микрометрические измерения двойных звезд», содержащий результаты тринадцатилетних наблюдений относительных положений звезд в 2640 парах, выполненных на рефракторе с объективом диаметром в девять дюймов. На основе наблюдений, выполненных Струве, а также его учениками Э. Прейссом и В. Делленом при помощи меридианного круга, он составил и опубликовал каталог средних положений 2874 звезд, преимущественно двойных и кратных. Эти каталоги явились фундаментом для всех последующих исследований в области двойных звезд. В начале 1837 года Струве опубликовал результаты наблюдений, производившихся в Дерпте с целью определения расстояния до звезды альфа Лиры (Веги). Следует заметить, что это было первое надежное определение звездного параллакса.

Первостепенное значение придавал Струве техническому оборудованию обсерватории и регулярному пополнению ее библиотеки.

«Во время путешествия летом текущего года в Германию, Францию и Англию по делам градусного измерения, – писал Струве в 1830 году в докладной записке, поданной Совету университета, – я имел счастье получить в подарок многие важные астрономические сочинения, некоторые из которых очень дорогие. Хотя эти подарки сделаны были мне лично, тем не менее я знаю, что я за них обязан моему научному положению директора обсерватории. Поэтому я дарю их ныне библиотеке Дерптского университета…

На страницу:
4 из 5