Полная версия
Альберт Эйнштейн
Он сделал расчет, используя формулы больцмановской статистики для энтропии. При описании излучения абсолютно черного тела он использовал тот же самый математический аппарат статистической механики, который используется для описания разреженного газа частиц. Эти расчеты и привели Эйнштейна к выводу, что излучение “в термодинамическом смысле ведет себя так, как будто состоит из независимых энергетических квантов”. Он также нашел способ расчета энергии “частиц” света при определенной частоте, значение которой совпало со значением, найденным Планком[261].
Дальше Эйнштейн показал, как существование этих световых квантов могло объяснить результаты эксперимента Ленарда по фотоэлектрическому эффекту, милостиво названного им “новаторской работой”. Если считать, что свет распространяется в виде дискретных квантов, то энергия каждого кванта просто определяется частотой света, умноженной на постоянную Планка. Эйнштейн предположил: если считать, “что световой квант передает всю свою энергию одному электрону”, то из этого следует, что свет с большей частотой будет выбивать электроны с большей энергией. С другой стороны, увеличение интенсивности (но не частоты) будет просто означать, что будет вылетать больше электронов, но при этом энергия каждого останется неизменной.
Именно такой результат Ленард наблюдал в своем эксперименте, но Эйнштейн, желая подчеркнуть, что результаты получены чисто теоретически, а не являются простой интерпретацией экспериментальных данных, с некоторой осторожностью, а может быть, скромностью во введении к статье утверждает, что свет состоит из маленьких квантов, и, “насколько можно видеть, наша концепция не противоречит свойствам фотоэффекта, которые наблюдал герр Ленард”.
Раздув костер, зажженный Планком, Эйнштейн превратил его в пламя, которое опалило всю классическую физику. Что именно содержится в статье Эйнштейна 1905 года такого, что делает ее по-настоящему прорывной и стоящей особняком, и почему она оценивается выше работы Планка?
В действительности, как пояснил Эйнштейн в статье, написанной в следующем году, его роль состояла в том, что он осознал физическое значение того, что открыл Планк[262]. Для Планка – революционера поневоле – квант был математическим приемом, который объяснял, как энергия испускается и поглощается при взаимодействии с материей. Но он не видел, как это связано с физической сущностью света в частности и электромагнитного поля вообще. Историки науки Джеральд Холтон и Стивен Браш писали: “Можно считать, что в статье Планка 1900 года квантовая гипотеза использовалась как математический прием, введенный для того, чтобы найти статистическое распределение, а не как новая физическая концепция”[263].
Эйнштейн, напротив, считал, что квант света – реальный объект, загадочный, невообразимый, раздражающий, некое безумное завихрение космоса. Для него эти кванты энергии (которые только в 1926 году назвали фотонами[264]) существовали, даже когда свет распространялся сквозь вакуум. Он писал: “Мы хотим показать, что определение Планком элементарных квантов до некоторой степени независимо от его теории излучения абсолютно черного тела”. Другими словами, Эйнштейн утверждал, что корпускулярная природа света – это свойство самого света, а не просто способ описания взаимодействия света с материей[265].
Даже после опубликования Эйнштейном статьи Планк не признал того прорыва, который совершил Эйнштейн. Через два года он предупредил молодого самоуверенного клерка из патентного бюро, что тот зашел слишком далеко и что на самом деле кванты просто описывают процессы, происходящие во время поглощения и излучения света, а не реальные свойства излучения в вакууме. Планк изложил ему свою точку зрения так: “Я не вижу смысла в понятии «квант действия» (квант света) в вакууме, оно имеет смысл только в месте, где происходит поглощение и испускание”[266].
Планк не принимал концепцию физической реальности квантов света и в дальнейшем. Когда через восемь лет после опубликования статьи Эйнштейна Планк предложил ему долгожданное место в Прусской академии наук, в рекомендательном письме, написанном им и еще несколькими учеными и содержащем много похвал Эйнштейну, Планк сделал приписку: “То, что иногда в своих построениях он может зайти слишком далеко, например в своей гипотезе о квантах света, вряд ли заслуживает серьезного осуждения”[267].
Незадолго до смерти Планк объяснил, почему ему долгое время не хотелось признавать, что следствия, вытекающие из его открытия, существуют в реальности. “Мои безуспешные попытки как-то встроить квант действия в классическую теорию продолжались много лет и потребовали от меня значительных усилий, – писал он, – многие из моих коллег воспринимали это почти как трагедию”.
По иронии судьбы теми же словами можно описать и то, что происходило с Эйнштейном. Он постепенно становился все более “равнодушным и скептически настроенным” по отношению к квантовой теории, которую сам создавал, говорил об Эйнштейне Бор. “И многие из нас восприняли это как трагедию”[268].
Из теории Эйнштейна возник экспериментально проверяемый закон для фотоэлектрического эффекта: энергия испущенных электронов линейно зависит от частоты света, причем коэффициентом служит постоянная Планка. Позже было экспериментально доказано, что формула верна. Ключевой эксперимент провел физик Роберт Милликен, возглавивший впоследствии Калифорнийский технологический институт, куда пытался зазвать Эйнштейна.
Но даже после подтверждения правильности формул Эйнштейна для фотоэффекта Милликен не согласился с теорией. Он утверждал, что “несмотря на очевидный и полный успех уравнения Эйнштейна, физическая теория, на основании которой оно было выведено и стало свидетельством ее правильности, так неубедительна, что Эйнштейн сам, как мне кажется, уже не придерживается ее”[269].
Милликен был неправ, когда говорил, что теория фотоэлектрического эффекта Эйнштейна была отвергнута. Фактически именно за открытие закона фотоэлектрического эффекта Эйнштейн получил свою единственную Нобелевскую премию. С появлением в 1920-х годах квантовой механики фотоны стали реальностью и фундаментальной частью физики.
Однако в одном важном пункте Милликен был прав. Эйнштейн находил все больше зловещих следствий из гипотезы квантов и корпускулярно-волнового дуализма света, и это его сильно тревожило. В письме, которое Эйнштейн написал почти в конце жизни своему близкому другу Мишелю Бессо, уже после того, как квантовая механика была принята почти всеми жившими в то время физиками, он пожаловался: “Все эти пятьдесят лет размышлений не приблизили меня к ответу на вопрос о том, что же это такое – кванты света”[270].
Докторская диссертация: размер молекул, апрель 1905 года
Эйнштейн уже написал статью, которая впоследствии перевернет фундаментальную физику, но ему так и не удалось защитить докторскую диссертацию. И он решил сделать еще одну попытку и написать такую диссертацию, которая была бы принята.
Он понял, что для этого нужно выбрать безопасную тему, и она точно не должна быть связана ни с квантами, ни с теорией относительности. И он выбрал в качестве темы вторую из тем, над которыми в то время работал, – “Новое определение размеров молекул”. Он закончил писать диссертацию 30 апреля, а в июле отправил ее в Цюрихский университет[271].
Возможно, из предосторожности и уважения к консервативным взглядам своего научного руководителя Альфреда Кляйнера он не прибег к новаторским методам статистической физики, которые использовал в предыдущих работах (и в статье о броуновском движении, которую закончил спустя одиннадцать дней), а использовал в основном методы классической термодинамики[272]. Тем не менее он смог продемонстрировать, как поведение бесчисленных маленьких частиц (атомов, молекул) проявляется в наблюдаемых явлениях и что наблюдаемые явления могут рассказать нам о природе этих маленьких невидимых частиц.
Почти на сотню лет раньше итальянский ученый Амедео Авогадро (1776–1856) выдвинул гипотезу, оказавшуюся впоследствии правильной, о том, что одинаковые объемы любого газа при одинаковой температуре содержат одинаковое количество молекул. И возникла сложная задача – выяснить, сколько именно молекул содержится в определенном объеме.
Обычно выбирается объем, занимаемый молем газа[273], который составляет 22,4 литра при нормальных температуре и давлении. Количество молекул, находящееся в этом объеме при таких условиях, стали потом называть числом Авогадро. Точное определение этой величины было, да и остается, довольно сложным делом, сейчас она считается равной 6,02214 × 10²³. (Это большое число: если рассыпать такое количество кукурузных зерен по территории Соединенных Штатов, они покроют всю площадь слоем толщиной примерно пятнадцать километров[274]).
Большая часть предыдущих измерений выполнялись в газах, и, как Эйнштейн отметил в первой фразе своей статьи, “физические явления, наблюдаемые в жидкостях, до сих пор не использовались для определения размеров молекул”. Эйнштейн стал первым, кто получил разумные результаты (после исправления в своей диссертации нескольких математических ошибок и внесения поправок в экспериментальные данные), используя жидкости.
В его методе использовались данные по вязкости, то есть по тому сопротивлению, которое оказывает жидкость движущемуся через нее телу. Например, смола и патока имеют очень большую вязкость. Если растворять сахар в воде, раствор будет тем более вязким, чем он слаще. Эйнштейн представил себе, что молекулы сахара постепенно протискиваются через маленькие молекулы воды и диффундируют в ее объем. Он вывел два уравнения с двумя неизвестными – размером молекул сахара и их количеством, – которые и нужно было решить. Он сумел это сделать и нашел два неизвестных. Таким образом он определил число Авогадро, которое оказалось у него равным 2,1 × 10²³.
К сожалению, это число оказалось не слишком близким к правильному значению. Когда он сразу после того, как работа была принята Цюрихским университетом, в августе подал статью в Annalen der Physik, редактор Пауль Друде (к счастью, не ведавший, что Эйнштейн раньше собирался высмеять его) задержал публикацию статьи, поскольку знал о работе, в которой были получены более точные экспериментальные данные о свойствах раствора сахара. Используя эти новые данные, Эйнштейн получил результат, равный 4,15 × 10²³, который гораздо ближе к правильному.
Через несколько лет один французский студент применил этот подход в своем эксперименте и обнаружил, что кое-что было упущено. Тогда Эйнштейн попросил ассистента в Цюрихе проверить результаты еще раз и обнаружил небольшую ошибку, подправил цифру, оказавшуюся теперь равной 6,5 × 10²³, и это уже было вполне хорошим результатом[275].
Позже Эйнштейн сказал, возможно полушутя, что, когда он подавал свою диссертацию, профессор Кляйнер сначала отклонил ее из-за того, что в ней слишком мало страниц. А когда он добавил в нее всего одно предложение, ее сразу приняли. Этому нет документального подтверждения[276], но, так или иначе, эта диссертационная работа стала одной из его самых цитируемых и в практическом отношении ценных статей, и у метода появилось множество приложений в различных областях – от перемешивания цемента до производства молочных продуктов и аэрозолей. И хотя это и не помогло ему получить академическую ставку, зато теперь он мог называться доктором Эйнштейном.
Броуновское движение, май 1905 года
Через одиннадцать дней после завершения работы над диссертацией Эйнштейн закончил еще одну статью, посвященную поискам свидетельств существования невидимых частиц. Для того чтобы показать, как невидимые частицы проявляют себя в видимом мире, он воспользовался, как всегда делал после 1901 года, статистическим анализом случайных взаимодействий.
Применив такую методику, Эйнштейн объяснил явление, называемое броуновским движением, которое к тому времени поражало ученых почти восемьдесят лет. Действительно, удивительно, как маленькие частицы примеси в такой жидкости, как вода, все время беспорядочно скачут в разных направлениях. В качестве “побочного результата” этой работы в ней было раз и навсегда убедительно доказано, что атомы и молекулы в физических объектах действительно существуют.
Броуновское движение было так названо в честь шотландского ботаника Роберта Броуна, который в 1828 году опубликовал свои детальные наблюдения за тем, как рассматриваемые через сильный микроскоп очень мелкие частицы пыльцы, взвешенные в воде, качаются и блуждают. Изучение других частиц, в частности мельчайших крупинок, отшелушенных от древнеегипетского Сфинкса, дало похожие результаты. Было предложено множество объяснений, например наличие мелких течений в объеме воды или воздействие света. Но ни одна из теорий не казалась правдоподобной.
Когда в 1870 году была разработана кинетическая теория, в которой использовались случайные движения молекул для объяснения, например, поведения газов, многие пытались с ее помощью объяснить и броуновское движение. Но, поскольку частицы примеси были в 10 тысяч раз крупнее молекул воды, казалось, что у молекул не хватит сил сдвинуть с места частицу (как бейсбольный мяч не может сдвинуть предмет диаметром 800 метров)[277].
Эйнштейн показал, что, хотя одна молекула за одно столкновение действительно не может сдвинуть частицу с места, миллионы случайных столкновений в секунду могут объяснить случайное блуждание частиц, которое и наблюдал Броун. “В этой статье – объявил он в первом предложении, – будет показано, что согласно молекулярно-кинетической теории теплоты взвешенные в жидкости объекты такого размера, что их можно увидеть с помощью микроскопа, должны в результате тепловых молекулярных движений совершать движения на такие расстояния, что их можно легко наблюдать в микроскоп”[278].
Он продолжил, сказав на первый взгляд странную вещь: эта его работа написана совсем не для того, чтобы объяснить броуновское движение. И действительно, при построении своей теории он даже не был уверен, что законы движения, которые он получил с помощью своей теории, те же, что управляют движениями частиц, увиденных Броуном. “Возможно, что движения, которые обсуждаются в данной работе, идентичны так называемому броуновскому движению, но данные, которые оказались в моем распоряжении, настолько неточны, что я не могу на их основании сделать какое-либо заключение”. Позднее он еще больше дистанцировался от намерения объяснить в своей работе броуновское движение: “Не зная, что наблюдения над броуновским движением уже давно велись, я открыл, что атомистическая теория приводит к существованию доступного для наблюдения движения взвешенных микроскопических частиц”[279].
На первый взгляд, отрицание Эйнштейном того, что его теория описывала броуновское движение, выглядит странным и даже лицемерным. В конце концов, не он ли писал Конраду Габихту за несколько месяцев до этого: “Такие движения взвешенных в жидкости частиц раньше наблюдали физиологи, назвавшие их броуновским молекулярным движением”? Но эта позиция Эйнштейна в таких вопросах была и правильна и важна, поскольку его работа не начиналась с описания экспериментального наблюдения броуновского движения и не завершалась объяснением этих результатов. Скорее, она была продолжением его более раннего подхода – использования статистического анализа для демонстрации видимых проявлений невидимых молекул.
Другими словами, Эйнштейн хотел убедить читателей, что он построил теорию, выведенную из основных принципов и постулатов, а не сконструировал ее на основе анализа экспериментальных данных (по этой же причине в своей статье про кванты света он дал ясно понять, что она возникла не как результат знакомства с экспериментами Филиппа Ленарда по фотоэффекту). Как мы вскоре увидим, это отличие он также подчеркнет, утверждая, что его теория относительности была построена не на основании рассмотрения результатов экспериментов по измерению скорости света и поискам эфира.
Эйнштейн показал, что удар одной молекулы воды не заставит взвешенную частичку пыльцы продвинуться на заметное расстояние. Однако в любой заданный момент времени частицу толкают со всех сторон тысячи молекул. В какой-то момент времени частица получит гораздо больше толчков с одной стороны, а в следующий момент залповые удары обрушатся на другую ее сторону.
В результате частицы будут двигаться, бросаясь из стороны в сторону, как говорят, случайно блуждая. Лучший способ представить себе это – вообразить пьяного, который оттолкнулся от фонарного столба и отправился в путь, но в следующую секунду его бросает в сторону, и он делает один шаг в случайном направлении, и так все время. Он может за два шага – один вперед, а другой назад – вернуться обратно к столбу, а может сделать два шага в одном и том же направлении и уйти от столба на два шага, а может сделать один шаг на запад, а следующий – на северо-восток. При построении графиков обнаруживается одно интересное свойство таких случайных блужданий: среднее квадратичное расстояние пьяницы от столба будет пропорционально корню квадратному из количества шагов или истекших секунд[280].
Эйнштейн понял, что невозможно, да и не нужно измерять каждый зигзаг броуновского движения, равно как не нужно измерять и скорость частиц в каждый момент времени. Но расстояния, которые проходят случайно блуждающие частицы, измерить очень просто, поскольку они растут со временем.
Эйнштейн хотел сделать конкретные предсказания для этих расстояний, которые можно было измерить, и использовал и свои теоретические знания, и имеющиеся экспериментальные данные по вязкости и скорости диффузии, получив в результате зависимости средних расстояний, проходимых частицами, от их размера и температуры жидкости. В качестве примера он вычислил, что при температуре 17°С для взвешенных в воде частиц диаметром в одну тысячную миллиметра “среднее смещение за одну минуту будет равно примерно 6 микронам”.
Это был конкретный результат, который можно было реально проверить, и из него вытекали очень важные следствия. “Если движение, которое здесь обсуждается, действительно можно наблюдать, – писал он – тогда классическую термодинамику уже нельзя считать в строгом смысле справедливой”. Поскольку он был сильнее в теоретических рассуждениях, чем в проведении экспериментов, закончил он призывом к экспериментаторам: “Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы, важные для теории теплоты!”[281]
Через несколько месяцев немецкий экспериментатор Генри Зидентопф, используя микроскоп с сильным увеличением, подтвердил предсказания Эйнштейна. С практической точки зрения физическая реальность атомов и молекул этим была окончательно доказана. Позже физик-теоретик Макс Борн вспоминал: “В то время атомы и молекулы еще отнюдь не рассматривались в качестве реальных объектов. Я думаю, что эти работы Эйнштейна больше, чем любые другие работы, убедили физиков в реальности атомов и молекул”[282].
В качестве маленького бонуса Эйнштейн в своей статье предложил альтернативный метод вычисления числа Авогадро. Абрахам Пайс сказал об этой статье: “Она изобилует идеями, а заключительный вывод о том, что число Авогадро можно определить из наблюдений с помощью обычного микроскопа, каждый раз вызывает чувство восхищения, даже если ты уже читал статью раньше и знаком с ходом рассуждений”.
Мощь интеллекта Эйнштейна была такова, что он мог обдумывать несколько разных идей одновременно. Даже когда он размышлял над пляшущими частицами в жидкости, он одновременно еще и бился над различными теориями, связанными с движением тел и скоростью света. Через пару дней после того, как он отослал в журнал свою статью по броуновскому движению, он устроил новый мозговой штурм в дискуссии со своим другом Мишелем Бессо. Как он и написал Габихту в том же месяце в своем знаменитом письме, из этого получится “модифицированная теория пространства и времени”.
Часовая башня в Берне
Глава шестая
Специальная теория относительности
1905
История вопроса
Концепция теории относительности проста. Суть ее в том, что фундаментальные законы физики неизменны и не зависят от того, как вы движетесь.
В специальном случае, когда наблюдатель движется с постоянной скоростью, эта концепция представляется естественной. Вообразите себе мужчину, сидящего дома в кресле, и женщину, медленно проплывающую над ним в самолете. Каждый из них может налить чашку кофе, стукнуть по мячу, посветить фонариком, подогреть булочку в микроволновке, и для обоих законы физики будут одними и теми же.
В действительности нет способа определить, кто из них находится “в движении”, а кто “в покое”. Мужчина в кресле может считать, что он находится в покое, а самолет – в движении. И наоборот, женщина в самолете может считать, что она находится в состоянии покоя, а Земля проплывает мимо. Не существует эксперимента, с помощью которого можно установить, кто из них прав.
На самом деле установить точно, кто из них прав, невозможно. В данном случае можно только сказать, что каждый из них движется относительно другого и, естественно, что оба они очень быстро движутся относительно других планет, звезд и галактик[283].
Специальная теория относительности, которую Эйнштейн сформулировал в 1905 году, применима только к этому специальному случаю (отсюда и название), то есть к случаю, когда наблюдатели движутся друг относительно друга равномерно и по прямой, то есть с постоянной скоростью. Такие системы называются “инерциальными системами отсчета”[284].
Труднее объяснить более общий случай, когда человек ускоряется или движется по криволинейной траектории – например, крутится, тормозит, вообще движется произвольным образом, то есть находится в некоторой форме неравномерного движения. В этом случае у него и кофе наливается не так, и мяч отскакивает по-другому, чем у людей, совершающих эти действия в равномерно и плавно движущемся поезде, самолете или просто на Земле. И как мы увидим, Эйнштейну потребовалось еще десятилетие, чтобы прийти к так называемой общей теории относительности, включившей в теорию гравитации ускоренное движение, и попытаться применить к ней концепцию относительности[285].
История теории относительности началась в 1632 году, когда Галилей провозгласил принцип, согласно которому все законы движения и механики (законы электромагнетизма еще не были открыты) остаются одними и теми же во всех системах координат, движущихся с постоянной скоростью друг относительно друга. В своем “Диалоге о двух главнейших системах мира” Галилей хотел защитить идею Коперника о том, что представление о Земле, расположенной в центре Вселенной и находящейся в состоянии покоя, и вращающихся вокруг нее всех остальных телах неправильно. Скептики оспаривали эту точку зрения и говорили, что, если бы Земля двигалась так, как утверждал Коперник, мы бы это почувствовали. Галилей опроверг их доводы, предложив в качестве доказательства провести кристально ясный мысленный эксперимент в каюте плавно плывущего корабля: “Давайте представим себе, что вы с другом заперлись в каюте, расположенной под палубами большого корабля, и вместе с вами там оказалось несколько мух, бабочек и еще каких-нибудь маленьких летающих насекомых. Кроме того, там находится большой сосуд с водой, в котором плавают рыбки. Подвесим бутылку, из которой жидкость капля за каплей вытекает в расположенный под бутылкой широкий сосуд. Когда корабль неподвижен, понаблюдайте внимательно, как маленькие насекомые летают по каюте в разных направлениях с одинаковыми скоростями. Рыбки тоже плавают в разных направлениях с равными скоростями, капли падают прямо в сосуд под бутылкой. И когда вы кидаете какую-либо вещь своему другу, стоящему то по одну, то по другую сторону от вас на одинаковом расстоянии, вам нужно приложить одинаковые усилия, чтобы она долетела до него. Если же вы будете прыгать, отталкиваясь двумя ногами, вы выпрыгнете на одинаковое расстояние в любом направлении. И если вы убедились во всем этом, теперь сделайте так, чтобы корабль плыл с любой заданной вами скоростью, но только равномерно, без качки и рывков. И вы не обнаружите ни малейшей разницы во всех перечисленных явлениях, и ни по одному из этих явлений вы не сможете определить, движется ли корабль или стоит на месте”[286].
Лучше принцип относительности нельзя описать – или по крайней мере объяснить, как его применять к системам, движущимся друг относительно друга с постоянной скоростью.
Внутри корабля Галилея можно с легкостью беседовать, поскольку воздух, в котором распространяются звуковые волны, движется плавно вместе с людьми в каюте. Подобным же образом, если один из пассажиров корабля Галилея бросит камешек в сосуд с водой, от места его падения пойдут такие же волны, как если бы этот сосуд стоял на берегу. Это происходит потому, что вода, на поверхности которой распространяются эти волны, плавно движется вместе с сосудом и всем остальным в каюте.