Полная версия
Энциклопедия «Техника» (с иллюстрациями)
АВТОМАТИЗИ́РОВАННАЯ СИСТÉМА УПРАВЛÉНИЯ (АСУ), совокупность информационных технологий, программных и технических средств (компьютеров, средств связи, устройств отображения информации и т. д.) и организационных комплексов, объединённых в единую систему «человек – машина» для обеспечения рационального управления сложным объектом (процессом) в соответствии с заданной целью. В отличие от систем автоматического управления, в АСУ человек не только контролирует работу автоматов, но и активно участвует в самом процессе управления, оценивает результаты обработки оперативной информации, принимает решения по координации работы отдельных звеньев АСУ, берёт на себя оперативное управление при отказах и сбоях в работе системы и т. д.
АВТОМÁТИКА, отрасль науки и техники, охватывающая теорию и принципы построения систем управления, действующих без непосредственного участия человека; в узком смысле – совокупность методов и технических средств, исключающих участие человека при выполнении операций конкретного процесса. Автоматика как наука возникла на базе теории автоматического регулирования, основы которой были заложены в работах Дж. Максвелла (1868), И. А. Вышнеградского (1872—78), А. Стодолы (1899) и др.; в самостоятельную научно-техническую дисциплину окончательно оформилась к 1940 г. В стадии становления автоматика опиралась на теоретическую механику и теорию электрических цепей и систем, решала задачи, связанные с регулированием давления в паровых котлах, хода поршня паровых и частоты вращения электрических машин, управления работой станков-автоматов, АТС, устройствами релейной защиты. Соответственно и технические средства автоматики в этот период разрабатывались и использовались применительно к системам автоматического регулирования. Интенсивное развитие всех отраслей науки и техники в кон. 1-й пол. 20 в. вызвало также быстрый рост техники автоматического управления, применение которой становится всеобщим. 2-я пол. 20 в. ознаменовалась дальнейшим совершенствованием технических средств автоматики и широким, хотя и неравномерным для разных отраслей промышленности, распространением автоматических управляющих устройств с переходом к более сложным автоматическим системам, в частности в промышленности – от автоматизации отдельных агрегатов к комплексной автоматизации цехов и целых производств. Большое значение при этом приобретают технические средства сбора и автоматической обработки информации, т. к. многие задачи в сложных системах управления могут быть решены только с помощью средств и информационных технологий вычислительной техники.
АВТОМАТИ́ЧЕСКАЯ ЛИ́НИЯ, комплекс рабочих машин, основного и вспомогательного оборудования, автоматически выполняющих весь процесс изготовления или переработки продукта производства. Автоматические линии делятся на специальные, специализированные и универсальные. Специальные линии используются для обработки строго определённых по форме и размерам изделий. На специализированных линиях обрабатываются однотипные детали с более широким диапазоном размеров. Универсальные автоматические линии дают возможность быстро переналаживать оборудование для изготовления различной однотипной продукции.
Управление автоматическими линиями осуществляется с помощью автоматизированной системы управления, обслуживающий персонал ведёт наблюдение (контроль) за работой агрегатов, обеспечивает их ремонт и наладку. Наиболее распространены роторные и роторно-конвейерные линии. Роторные автоматические линии состоят из рабочих и транспортных роторов, соединённых общим приводом. Рабочий ротор представляет собой жёсткую систему, на которой монтируется группа орудий обработки заготовки. Транспортные роторы (барабаны или диски) передают заготовки с одного рабочего ротора на другой и транспортируют готовые изделия. Рабочие и транспортные роторы работают синхронно, передавая заготовки с одной технологической операции на другую. На автоматических роторных линиях выполняются операции штамповки, прессования, сборки и т. д. Они часто применяются для штамповки деталей (напр., радиодеталей), в производстве изделий из пластмасс, в пищевой промышленности для расфасовки и упаковки продуктов и т. д. Роторные линии имеют высокую производительность, однако число выполняемых на них операций, их последовательность и время выполнения жёстко ограничены. Гораздо более гибкими являются роторно-конвейерные линии, на которых детали передвигаются конвейером, огибающим рабочие роторы.
АВТОМАТИ́ЧЕСКАЯ МЕЖПЛАНÉТНАЯ СТÁНЦИЯ, космический аппарат, совершающий полёт в межпланетное пространство в автоматическом режиме. Используется для изучения небесных тел и межпланетного пространства. Для выполнения этих задач на автоматической межпланетной станции устанавливается научная аппаратура, измеряющая параметры небесных тел, их физический и химический состав, магнитные и другие излучения. Телевизионная аппаратура позволяет получить изображения небесных тел, их строение и рельеф. Управление автоматической межпланетной станцией осуществляется обычно с помощью бортовых компьютеров в соответствии с заданной программой. В случае необходимости программа может корректироваться посредством радиосигналов с Земли. Для обеспечения станции энергопитанием, как правило, используются солнечные батареи, но могут применяться и аккумуляторы, ядерные источники тока и др. Для вывода автоматической межпланетной станции на заданную траекторию необходимо преодолеть вторую космическую скорость. Первой в мире автоматической межпланетной станцией стала «Луна-1» («Мечта», 2 января 1959 г.), пролетевшая вблизи Луны и ставшая искусственным спутником Солнца. С помощью автоматических межпланетных станций, достигших Луны, Марса, Венеры, Юпитера, Сатурна и их спутников, получены ценные сведения о строении Солнечной системы и комет.
Автоматическая межпланетная станция «Венера-13»
АВТОМАТИ́ЧЕСКАЯ ТЕЛЕФÓННАЯ СТÁНЦИЯ (АТС), комплекс технических средств, предназначенных для временного автоматического соединения (коммутации) телефонных аппаратов (абонентов) телефонной сети и их разъединения по окончании переговоров. Соединение абонентных линий на АТС осуществляется на основании адресной информации (код номера вызываемого абонента), поступающей от телефонного аппарата вызывающего абонента. В первых телефонных сетях 19 в. для обеспечения разговоров абонентов «каждого с каждым» строили ручные телефонные станции (необходимая коммутация линий производилась вручную «телефонными барышнями»). В 1920—30-х гг. появились первые АТС, управляемые самими абонентами, набирающими нужный номер на своём телефонном аппарате. Одним из назначений АТС стала защита разговоров от подслушиваний телефонистками, поэтому первые АТС устанавливались в правительственных учреждениях, даже появилось название такой связи – «вертушка» по применяемым для набора номера вращающимся дисковым номераторам. До 1960-х гг. повсеместно применялись электромеханические АТС сначала с электродвигателями, затем – с шаговыми искателями и реле. В кон. 1960-х гг. на смену электромеханическим пришли электронные АТС. Они обеспечивают высокое качество связи, надёжность и существенно меньше потребляют электроэнергии, менее металлоёмки.
Одна АТС может обслуживать от 10—100 (небольшие учрежденческие станции) до 10 000 абонентов (АТС в густонаселённых районах города). Управление АТС осуществляется с помощью ЭВМ, причём сложность современных программ управления АТС такова, что их стоимость обычно равняется стоимости всего оборудования станции. Применение ЭВМ позволило перейти к созданию т. н. интеллектуальных сетей связи, оказывающих различные «интеллектуальные» услуги абонентам, напр. переадресация вызова по любым заранее указанным номерам, разговор, оплачиваемый вызываемым абонентом, предоплата по сервисным телефонным картам, телеголосование и т. д. Современные электронные АТС позволяют начать организацию глобальной персональной связи: каждый житель Земли при рождении сможет получить свой телефонный номер, по которому с ним можно будет связаться независимо от его местоположения, глобальная система связи найдёт его в любом месте.
АВТОМАТИ́ЧЕСКИЙ ОПРЕДЕЛИ́ТЕЛЬ НÓМЕРА (АОН), устройство, позволяющее автоматически определять номера телефона вызывающего абонента. Для осуществления этой функции номер вызывающего абонента запоминается на время разговора и по запросу сообщается по служебному каналу связи на АТС, с которой связан вызываемый абонент. Первоначально это устройство использовалось для начисления оплаты за междугородные переговоры, для взаиморасчётов с операторами междугородной связи. Учитывая заинтересованность многих потребителей в информации о вызывающем абоненте, некоторые телефонные аппараты начали комплектовать блоками, формирующими сигналы запроса на АТС и расшифровывающими на своём дисплее ответные сигналы, содержащие номер телефона, с которого поступил вызов.
АВТОМАТИ́ЧЕСКИЙ ТЕЛЕФÓННЫЙ ОТВÉТЧИК, устройство, встроенное в телефонный аппарат или подключаемое к нему, которое по желанию абонента может ответить на вызов и записать передаваемое сообщение. Если в момент поступления вызова трубку телефонного аппарата не снимают, автоответчик включается и воспроизводит заранее наговоренный (обычно самим абонентом) текст с предложением записать передаваемое сообщение. По окончании записи телефонный ответчик выключается. Абонент может в любое время включить автоответчик на воспроизведение и прослушать все поступившие ему сообщения. Первые автоответчики создавались на основе диктофонов-магнитофонов; в современных автоответчиках применяются полупроводниковые запоминающие устройства. Аналогичный, но более широкий набор услуг представляют современные системы «голосовой почты», устанавливаемые на АТС. Сообщения абоненты могут прослушать, набрав известные им номера с любого телефона; «голосовая почта» может выполнять роль секретаря, напоминая о событиях, необходимых действиях, отправлять необходимые сообщения в заранее назначенные сроки по нужным адресам.
АВТОМАТИ́ЧЕСКИЙ ФОТОАППАРÁТ, см. в ст. Фотографический аппарат.
АВТОМАТИ́ЧЕСКОЕ РЕГУЛИ́РОВАНИЕ, автоматическое поддержание постоянства какой-либо физической величины – температуры, давления, уровня жидкости и т. д., – характеризующей технологический процесс, или её изменение по заданному закону (программное регулирование), или в соответствии с измеряемым внешним процессом (следящее регулирование). Осуществляется приложением управляющего воздействия к регулирующему органу объекта регулирования (напр., на задвижку, клапан). Для осуществления автоматического регулирования к регулируемому объекту подключается автоматический регулятор, вырабатывающий управляющее воздействие на регулирующий орган. Это управляющее воздействие вырабатывается регулятором в зависимости от разности между текущим значением регулируемой величины (температуры, давления, уровня жидкости и т. д.), измеряемой датчиком, и желаемым её значением, устанавливаемым задатчиком. Регулируемый объект и автоматический регулятор вместе образуют систему автоматического регулирования.
Первые регуляторы осуществляли прямое регулирование, при котором датчик (измерительный орган) непосредственно воздействовал на регулирующий орган. Такое автоматическое регулирование было возможно только на машинах малой мощности, где для перемещения регулирующих органов (рычага, колеса) не требовалось больших затрат энергии. Позднее в цепь регулирования был введён усилитель (гидравлический, пневматический, электрический), что дало возможность реализовать непрямое регулирование с помощью исполнительного механизма. Оно повысило мощность воздействия регулятора на регулирующий орган.
АВТОМАТИ́ЧЕСКОЕ УПРАВЛÉНИЕ, управление объектом (машиной, прибором, системой, процессом) в соответствии с заданным алгоритмом без непосредственного участия человека. Осуществляется с помощью технических средств, обеспечивающих автоматический сбор, хранение, передачу и переработку информации, а также формирование управляющих воздействий (сигналов) на объект управления.
Автоматическое управление широко применяется для освобождения человека от непосредственного участия в управлении объектом, в т. ч. от работы в труднодоступных или опасных для здоровья условиях, для выполнения операций, требующих невозможных для человека скоростей обработки информации, для повышения производительности труда, качества и точности управления. Примерами автоматического управления могут служить автоматическое управление уровнем воды в барабане парового котла с помощью поплавкового регулятора, скорости вращения турбины с помощью центробежного регулятора, полётом самолёта с помощью автопилота.
«АВТОМАШИНИ́СТ», автономная система автоматического управления движением поездов. Впервые создана в России в 1957 г. для пригородных электропоездов и поездов метрополитена. Предназначена для выполнения функций, которые обычно возлагаются на локомотивную бригаду: включение и выключение тяговых двигателей при регулировании времени хода по перегону, управление прицельным торможением на станциях, регулирование скорости движения и силы тяги локомотива, открывание и закрывание вагонных дверей, включение радиоинформатора и т. д.
АВТОМОБИ́ЛЬ, самоходная транспортная машина, обычно на колёсном (реже полугусеничном) ходу, приводимая в движение собственным двигателем. Различают автомобили пассажирские (легковые, автобусы), грузовые, специальные (пожарные, санитарные, автокран, автолавка, рефрижератор, боевые машины пехоты и т. д.) и спортивные (багги, гоночные, напр. болиды «Формулы-1», раллийные). По проходимости автомобили подразделяют на дорожные, внедорожные (в т. ч. карьерные), повышенной проходимости и высокой проходимости. Автомобили с кузовами особой конструкции, предназначенные для перевозки определённых грузов, называются специализированными – лесовоз, фермовоз, цементовоз, бензовоз и др.
Трёхколёсный автомобиль К. Бенца
Автомобиль содержит двигатель, трансмиссию, ходовую часть, кузов, систему управления, электрооборудование, сервисные устройства. Двигатель может быть бензиновым (карбюраторный внутреннего сгорания), дизельным, газовым (на баллонном газе), электрическим, газотурбинным. Трансмиссия представляет собой совокупность устройств, передающих вращающий момент от двигателя к ведущим колёсам (гусеницам). В состав трансмиссии входят собственно двигатель, механизм сцепления, коробка передач (скоростей), карданная передача, главная передача (дифференциальный механизм, дифференциал). По компоновке основных агрегатов различают автомобили с передним или задним расположением двигателя, с приводом на задние или(и) передние колёса. Ходовая часть состоит из рамы, на которой устанавливают остальные части и узлы автомобиля (у многих легковых автомобилей нет рамы, её функции выполняет кузов), подвесок, осей (мостов переднего и заднего) и движителей. Система управления служит для изменения направления и скорости движения автомобиля, в неё входят рулевой механизм с рулевой колонкой, тормозной механизм, регулятор подачи топлива в двигатель, переключатель скоростей. Электрооборудование состоит из источников тока (аккумуляторной батареи и электрогенератора, приводимого в действие от главного двигателя), осветительных приборов внутреннего и наружного освещения (фары, подфарники, стоп-сигналы, сигналы поворота, габаритные огни), звуковой сигнализации, системы зажигания. К сервисным устройствам относятся приборы вентиляции и отопления, кондиционер, радиоприёмник, магнитофон (плеер), стеклоочистители, видеомагнитофон и телевизионные мониторы (в туристических и междугородных автобусах) и др.
Автомобили выпускают во многих странах. Больше всего в Японии, США, Франции, Республике Корея, Испании, Великобритании, Бразилии, Италии. Крупнейшие автомобильные компании (фирмы, концерны) представляют собой транснациональные корпорации: «Дженерал моторс», «Форд мотор», «Тойота мотор», «Фольксваген», «Рено/Ниссан», «Даймлер/Крайслер», «Пежо/Ситроен», «Хонда», «Хёндэ/Киа», «Фиат», «Мицубиси хэви индастрис», «Бритиш мотор холдингс», «Воксхолл моторс». В России автомобили выпускают автозаводы в Тольятти («Ваз», «Лада», «Нива»), Нижнем Новгороде («Волга», ГАЗ, «Газель»), Москве (ЗИЛ), Ижевске («Иж москвич») и др.
Схема расположения основных узлов автомобиля «Фольксваген-Гольф»:
1 – двигатель; 2 – воздушный фильтр; 3 – радиатор; 4 – полуось; 5 – аккумуляторная батарея; 6 – передний рабочий тормоз; 7 – рулевое управление; 8 – передняя амортизационная стойка; 9 – задняя подвеска; 10 – глушитель; 11 – амортизатор; 12 – задний рабочий тормоз
Попытки создания самодвижущихся повозок относятся к 16–17 вв. Но лишь в 1769—70 гг. Ж. Кюньо во Франции, а спустя несколько лет У. Мёрдок и Р. Тревитик в Англии построили первые автомобили, на которых были установлены паровые машины. Широкое распространение автомобиль получил после изобретения в 1860 г. французским механиком Э. Ленуаром двигателя внутреннего сгорания. В 1885 г. немецкий инженер Г. Даймлер построил мотоцикл с бензиновым двигателем, а его соотечественник К. Бенц в 1886 г. создал трёхколёсный автомобиль с таким же двигателем. В 1890-е гг. во Франции появились первые автомобили – «Панар-Левассор» и «Де Дион-Бутон», в США построил свой первый автомобиль Г. Форд. Первым легковым автомобилем, выпущенным в России, был «Руссо-Балт» (Рига, Латвия, 1908 г.), грузовым – АМО-Ф-15 (Москва, 1924 г.).
Автомобильный двигатель
За 100 лет существования автомобиль стал самым распространённым транспортным средством. Ежегодно в мире выпускается 54–59 млн. разнообразных автомобилей; в т. ч. св. 25 % грузовых автомобилей и автобусов. Бoльшая часть добываемой в разных странах нефти перерабатывается на бензин и дизельное топливо для удовлетворения нужд автомобильного транспорта.
АВТОМОБИ́ЛЬНАЯ ДОРÓГА, специально обустроенная или приспособленная для движения автомобильного транспорта полоса земли. Представляет собой сложное инженерное сооружение. Состоит из нескольких основных элементов: земляного полотна проезжей части, обочины или тротуара, разделительной полосы. Строительство дороги начинается с подготовительных работ: очистки местности от леса, камней, кустарников и т. д. Затем автогрейдеры, скреперы или бульдозеры приступают к созданию земляного полотна: формируют профиль дороги, устраивают насыпи и выемки, уплотняют, перемешивают и разравнивают грунт. На подготовленное полотно укладывают и уплотняют слои основания дорожной одежды. Это может быть песок, щебень или гравий, а может быть и цементно-бетонное основание. Последнее наиболее прочно и долговечно. Дороги с таким основанием выдерживают движение автомобилей практически любой грузоподъёмности. После этого приступают к устройству покрытия. Прежде асфальтобетонную смесь укладывали вручную лопатами, теперь это делает асфальтобетоноукладчик. Вслед за ним идут катки дорожные, которые 25–30 раз проходят взад и вперёд по одному и тому же месту и делают покрытие дороги твёрдым и совершенно ровным. Если покрытие дороги имеет большую ширину, асфальтоукладчик выкладывает асфальтобетонную массу несколькими параллельными полосами. На поверхности проезжей части наносят линии разметки, служащие для организации движения. Разделительная полоса часто выполняется в виде газона, барьера и т. п. Боковые кюветы используются для отвода воды. Для безопасной езды автомобильную дорогу оборудуют дорожными знаками, указателями, осветительными приборами. Пересечение нескольких автомобильных дорог на одном уровне называется перекрёстком.
Автомобильная дорога
В ряде случаев на пересечении дорог сооружают многоуровневые развязки с подъездными путями. Продольные уклоны (спуски и подъёмы), а также закругления на поворотах устраивают с учётом безопасного движения транспортных средств в реальном диапазоне скоростей. Автомобильная дорога, предназначенная для массового скоростного движения, называется автомагистралью или автострадой. Такая дорога отличается большой протяжённостью и высокой пропускной способностью. Она имеет не менее четырёх полос движения (по две в каждую сторону), многоуровневые развязки, асфальтобетонное покрытие.
АВТОМОБИ́ЛЬНЫЙ ПОЛИГÓН, участок местности, оборудованный для испытаний автомобилей.
В 1924 г. в США фирмой «Дженерал моторс» был построен первый в мире автополигон. В том же году появился полигон и во Франции. Отечественный Центральный научно-исследовательский полигон существует с 1964 г. Оборудование его даёт возможность проводить испытания автомобилей различных типов в условиях, гарантирующих сопоставимость результатов, полученных в разное время и обеспечивающих безопасность работы. Длительные скоростные испытания проводятся на кольцевых скоростных дорогах, имеющих подъёмы и спуски, типичные для автомагистралей. Топливная экономичность, тягово-скоростные и тормозные качества автомобилей проверяют на т. н. динамометрической дороге, имеющей прямолинейную, абсолютно горизонтальную поверхность. Для испытаний на долговечность оборудуются маршруты дорог с различными неровными твёрдыми покрытиями, в частности «бельгийская мостовая» – брусчатка, воспроизводящая старые мощёные дороги Европы. Пробег автомобиля ок. 1600 км по такой дороге достаточен для выявления всех возможных дефектов, которые могут встретиться при его эксплуатации в обычных дорожных условиях. Также имеется комплекс специальных дорог для испытаний на плавность хода, шумность, управляемость и устойчивость и т. п. Предусматриваются и специальные сооружения: водяные и грязевые бассейны, устройства для испытаний автомобилей на безопасность (столкновение с неподвижным препятствием, опрокидывание и т. д.), препятствия для оценки проходимости, пылевые и климатические камеры.
АВТОМОТРИ́СА, моторный самоходный вагон, приводимый в движение двигателем внутреннего сгорания (чаще дизельным). Пассажирские автомотрисы предназначаются для служебных поездок (напр., инспекционных, доставки ремонтных бригад к месту работы), а также для пассажирских перевозок на железнодорожных участках с малыми пассажиропотоками. С 1970-х гг. термином «автомотриса» обозначают в основном автодрезины (см. Дрезина) с дизельными двигателями. К автомотрисе можно прицеплять грузовой подвижной состав массой до 10 т, а также один или два прицепных пассажирских вагона с сидячими местами. Две автомотрисы с такими вагонами образуют поезд. Существуют и специальные монтажные автомотрисы, применяемые при сборке контактной сети железнодорожных путей. Они оснащены площадками с гидравлическим приводом, управляемым из кабины, могут подниматься на высоту до 7–9 м и поворачиваться на угол до 180°. Кроме того, они имеют крановые установки или подъёмные стрелы и комплекты электрифицированных инструментов. Скорость, развиваемая автомотрисой, 80—120 км/ч.
Монтажная автомотриса
АВТОПИЛÓТ, автоматическая система управления самолётом, вертолётом, ракетой и т. п., обеспечивающая сохранение заданного режима полёта. Представляет собой комплекс автоматических устройств, каждое из которых предназначено для сохранения (стабилизации) одного определённого параметра, напр. скорости полёта, углов крена и тангажа, курса, высоты. При отклонении какого-либо параметра от заданного значения в соответствующем автомате вырабатывается сигнал, пропорциональный данному отклонению. Этот сигнал после необходимых преобразований (дешифрирования, усиления, квантования и т. д.) через исполнительные механизмы (сервопривод) воздействует на органы регулирования двигателей и рули управления летательного аппарата до тех пор, пока не будет устранена причина отклонения. Таким образом автопилот стабилизирует полёт летательного аппарата без вмешательства пилота.
АВТОПОГРУ́ЗЧИК, самоходная подъёмно-транспортная машина для погрузочно-разгрузочных операций и перемещения грузов по территории предприятий, складов, стройплощадок и т. п. Основное рабочее оборудование автопогрузчика – грузоподъёмник, представляющий собой вертикальную раму, внутри которой перемещается каретка с установленным на ней набором съёмных грузозахватных приспособлений. Перемещение и привод грузоподъёмных механизмов автопогрузчика осуществляются двигателем внутреннего сгорания или электродвигателем, питаемым от батареи аккумуляторов; в этом случае машина носит название «электропогрузчик». В конструкции автопогрузчиков широко применяются гидравлические системы. Рабочее оборудование имеет обычно объёмный гидропривод, а в механизмах передвижения применяются механические, электрические, гидродинамические трансмиссии или мотор-колёса.