bannerbannerbanner
Холодный ядерный синтез. L E N R
Холодный ядерный синтез. L E N R

Полная версия

Холодный ядерный синтез. L E N R

текст

0

0
Язык: Русский
Год издания: 2019
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
6 из 7

Более того, ученый огорошил своих коллег предположением, что все частицы в природе существуют парами, что каждой заряженной частице соответствует своя античастица с такой же массой, но с зарядом противоположного знака. Дирак справедливо решил, что если существует пара для электрона – позитрон (так назвали антиэлектрон), то должна существовать и пара для протона, т.е. антипротон.

После многолетних противоречивых исследований, в середине 50 годов прошлого века, Квантовая электродинамика (КЭД) укрепила свои позиции, когда несколько блестящих теоретиков, таких, как Г. Бете, С. Томонага, Д. Швингер, Р. Фейнман, Ф. Дайсон и другие, дополнили её положениями о том, что фотон реагирует на присутствие или движение электрона.

Понятие спина электрона было введено Д. Уленбеком и С. Гаудсмитом в 1925 году из экспериментов тонкого расщепления спектральных линий атомов. Полуцелое значение спина с двумя возможными ориентациями спина относительно направления импульса было подтверждено П. Дираком в 1928 году. В опытах Штерна и Герлаха была определена величина спинового магнитного момента, которая оказалась равна значению магнетона Бора. В других экспериментах А. Эйнштейна-де Гааза и обратного эффекта Барнетта было установлено двойное превышение для гиромагнитного отношения спина, над ожидаемым из орбитальной теории движения электронов в атомах. Спиновый магнитный момент электрона, как считается в квантовой механике, обусловлен существованием у него собственного механического момента – спина. В САП утверждается, что классическое представление электрона, как вращающийся заряженный объект, не даёт правильного результата для орбитального движения электрона в атоме для гиромагнитного отношения. Кроме того, электрон обладает аномально большим магнитным моментом. Этот магнитный момент электрона был открыт в 1948 году П. Куш и Г. Фоли. Аномальным он назван потому, что его величина несколько превышала ранее принятую величину «нормального» магнитного момента – магнетона Бора. Это открытие вызвало массу проблем, приведших, в том числе, к созданию Д. Швингером, С. Томонагой и Р. Фейнманом новой методики вычислений в квантовой электродинамике (КЭД). Одной из основных задач этой теории является вычисление фактического, т.е. аномального магнитного момента электрона. Теория основана на идее взаимодействия электрона с виртуальными фотонами и дает результаты, весьма близкие к полученным экспериментально?

Современная наука рассматривает электрон как фундаментальную элементарную частицу, не обладающую структурой и размерами. Проведённые эксперименты по столкновению электронов высоких энергий давали значение около 10—17 см.

Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент.

Новые данные о магнитном моменте лептонов высказал и Ж. Лошак32 на работы по холодному ядерному синтезу группой Л. И. Уруцкоева. Но как и П. Дирак он считает, что магнитный монополь должен иметь постоянный магнитный заряд. Эти данные могут предсказать существование легкого магнитного монополя, являющегося лептоном, который в состоянии играть главную роль в различных эффектах, включая слабые ядерные взаимодействия. С использованием уравнения, симметрии и конуса Пуанкаре он показал, что угловой момент монополя относительно электрического заряда является единственным центром симметрии вращения вокруг фиксированного центра. Это является доказательством вращения монополя вокруг электрического заряда.

В 1989 году Г. Демельту была присуждена Нобелевская премия по физике за измерение магнитного момента электрона с точностью до 13 знаков после запятой. На основе формулы, включающей гиромагнитное отношение, размер составного электрона и его комптоновской длины волны, полученной Дреллом33 в 1980 году, Dehmelt H.34 (Г. Демельт) считает, что «электрон может иметь размер и структуру», а его размер из экспериментов по сверхточному определению магнитного момента электрона составляют величину около 10—20 см.

Другие свойства электрона следуют из исследований облака поляризации (полярон), рождающегося при движении электрона внутри кристаллической решётки и обусловленного её взаимодействием с внешним электрическим полем электрона. Сравнить полярон можно лишь с наглядной аналогией, когда «за человеком в солнечный день движется его тень, так за электроном внутри кристаллической решетки движется облако поляризации, образованное его электрическим полем. Встречные атомы, настигнутые облаком, поляризуются им, как бы связываются с электронами невидимыми нитями. Но и электрону эта связь с окружающими его атомами не обходится даром: он становится как бы тяжелее – масса увеличивается в шесть раз. Эту комбинацию электрона с окружающим его состоянием поляризации и назвали поляроном».

Достоверно лишь установлено, что электрические заряды раздельно существуют в двух видах – положительные и отрицательные. При этом разноимённые заряды притягиваются, а одноимённые отталкиваются. Элементарные заряды имеют в обязательном порядке и массу.

При измерениях в системе СИ во внешнем постоянном электрическом поле электрон проявляет отрицательный заряд электрического потенциала и направление спина, а в магнитном постоянном поле – свой вихревой магнитный момент, в поле тяготения Земли – заряд массы.

В квантовой электродинамике (КЭД) понятия знака заряда не существует, а позитрон описывается как электрон, движущийся обратно во времени.

Электроны рождаются в природе, с одной стороны, при образовании заряженных ядер химических элементов, путём распада нейтральных ядер, в процессах бета-распада ядер атомов химических элементов, при распаде нейтрона и других нестабильных элементарных частиц. А с другой стороны, при взаимодействии пороговых фотонов с атомно-молекулярным веществом в различных агрегатных состояниях – фотоэффект и пар – образование.

Свойства структуры электрона, кроме названных явлений, могут также дополнить исследования его свойств при ускорении в коллайдерах и распады короткоживущих элементарных частиц, таких как мюон, а также весьма загадочные явления бета-распада кобальта-60, нейтрона и некоторых других частиц. В этих превращениях ориентированные по спину (поляризованные) внешним магнитным полем распадающиеся ядра излучают в одну сторону больше электронов, чем в другую. Это же явление наблюдается и у античастиц. Эксперименты, выполненные в этом направлении с 1956 по 1964 мировым научным сообществом, показали о наличии у электронов, позитронов и других микрочастиц сложной лево- и право- вращательной структуры.

Все больше и больше новых данных свидетельствует о том, что разобраться в строении элементарных частиц при помощи существующих теорий невозможно. Нужна новая революция. Необходимо идейное перевооружение. И это новое оружие – невидимый заряд энергии или магнитный монополь, как невидимая энергетическая субстанция всего сущего с возрастом жизни, сравнимым со сроком нашей Вселенной.

Итак, на рубеже ХХI века на базе классической и квантовой физики родилась новая физика, хотя её ростки были посажены Д. Кили и Н. Тесла в начале ХХ века. Это отнюдь не значило, что все ранее сделанное учеными отвергалось и заменялось иными взглядами, просто физика росла в глубину дискретного пространства-поля. Действительно, классическая физика, открывшая людям глаза на многие явления природы, ответившая на массу вопросов, стала в тупик перед миром больших скоростей и миром ничтожно малых частичек материи, т.е. зёрен-потенциалов дискретного пространства-поля.

Электрон в покое. Согласно реальному представлению электрон, как замкнутое, а поэтому инертное и стабильное микропространство с массой, электрическим зарядом и спином в СИ, обладает структурой, внешним пульсирующим полем, внутренним зарядом энергии, геометрической формой и двойным последовательным размером в состоянии источник (сфера-пассивное состояние не излучает поля) и поле (четверть волновод дискретного пространства-поле – активное состояние), а также внутренними и внешними физическими свойствами. В таком состоянии источник энергии не излучает внешних полей. Размер его волновода в момент разрядки источника является мерой энергии и зависит от его состояния значения величины заряда энергии (свободное, связанное или в движении) и колеблется в пределах от 0,6 до 1,2 х 10 -10 см. Причём, сфера заряда энергии пульсирует, вращаясь по волноводу, с частотой около 1020 Гц, при котором старый волновод обновляется новым и выталкивается во внешнее пространство, формируя внешнее поле электрона. Поэтому большее время около 10—20 секунды сфера источника переменного диаметра находится в состоянии вращения и излучения при формировании волновода электрона. Излучается магнитный вихревой поток зёрен-потенциалов, который покидает новый формирующийся замкнутый волновод. Его комптоновская длина волны составляет величину 2,4 х 10—10 см. Дебройлевская длина волны электрона в атоме (т.е. размер сферической области дискретного пространства, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10—7 – 10—8 см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10—3 – 10—4 см. Таким образом, высоко возбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны. У электрона (позитрона) самая минимально возможная масса-энергия и электрический заряд инертного покоя (511 Кэв и 1,6 х 10– 19 К) в системе СИ обусловлена разрядом пульсаций гравиэлектромагнитного монополя (ГЭММ) в триаду монополей с последовательным излучением квантов потока электрических, гравитационных и магнитных зёрен-потенциалов в его замкнутой и одноконтурной структуры волноводов (фото 10).


Фото 10. Схемы электрона (слева) и позитрона (справа) в момент излучения источником ГЭММ (чёрный конус) четверть-волноводов. Контур волноводов электрона: синий – электрические спирали, красный- гравитационные спирали зонтика его четверть-волновода. Контур волноводов позитрона: красный – электрические спирали, синий – гравитационные спирали.


В отличие от структуры электромагнитных зёрен свободного магнитного монополя микровихрона фотона, в электроне гравитационный монополь образуется из квантового перехода ГЭММ, а структура его зерен становится электрогравитационной. Эффективный размер фазового объёма спиральных волноводов пульсирующего поля свободного электрона в состоянии покоя составляет величину 1,2 х 10—10 см и в зависимости от скорости движения и состояний связности в атоме может иметь такой размер гораздо меньше указанного вплоть до 0,6 х 10—10 см, а при скоростях на ускорителях почти равной скорости света в 200 раз меньше, т.е. превращается в мюон. Размер же источника электрона ГЭММ в свернутом состоянии сферы может достигать размеров 10 -20 см, а для ядерных частиц с полуцелым спином со структурой ГЭММ, составляющих оболочки атомных ядер типа нейтральных мезонов, на три-пять десятичных порядков меньше указанного. Частота колебаний ГЭММ свободного электрона из свёрнутого состояния сферы-осциллятора в состояние развёрнутого состояния четверти длины волны составляет величину около 1,2 х 1020 Гц. Таким образом в реальном представлении за основу элементарных частиц с полуцелым спином принята концепция Луи де Бройля – частица может существовать последовательно в корпускулярном (сфера) и в форме волны (четверть волновода). На фото 12 приведена реальная картина мгновенного состояния электрона-позитрона после завершения процессов вращения-монополей с конденсацией электрических и гравитационных зерен-потенциалов дискретного пространства-поля частиц.


Фото 11. Конденсация электрической и гравитационной энергии в соответствующие зёрна-потенциалы на волноводах электрона и позитрона.


При высокочастотном обновлении волноводов формируется внешнее поле электрона, представленное на фото 12.


Фото 12. Рождение внешнего поля электрона, как активного состояния: – слева излучение электрического однополярного кванта-поля от источника ГЭММ, – справа излучение однополярного кванта-поля от источника ГЭММ гравитационного монополя. Реализуется по де Бройлю: частица-волна-поле-частица из ГЭММ.


Возбуждённая триада монополей при перезарядке ГЭММ электрона воспроизводит новый контур-волновод, отталкивая предыдущий во внешнее пространство, формируя внешнее поле – электрическое и гравитационное.

Объём этого поля-пространства, как и длина космического трека фотона из-за горизонта, соизмерим с объёмом нашей всей Вселенной. Его стабильное по возрасту жизни микропространство имеет отрицательный (позитрон – положительный) заряд 1,6 х 10—19 Кл в системе СИ, хотя реально в природе не существует таких зарядов, как не существует заряда массы, силы и времени. и т. д.

А существует вихревой электрический монополь – заряд электрическим потенциалом (источник) и вихревой гравитационный монополь – заряд гравитационным потенциалом (источник), которые рождают внешние однополярные кванты-поля – неравномерно по спиралям размещённые на его одноконтурном волноводе-кванте. Указанные на фото 12 однополярные кванты внешнего поля электрона, излучаются последовательно в разные моменты времени.

Форма пульсирующего одноконтурного замкнутого волновода из электропотенциалов и гравпотенцилов определяет каноническую форму для всех лептонов – полуцелый спин. Освободившиеся при разрядке магнитного монополя его зёрна-потенциалы в форме аналогичного однополярного кванта-поля определяют его аномально большой магнитный момент. Все эти данные и легли в основу о механизме рождения спина у электрона под действием магнитного монополя, т.е. вращения при разрядке гравитационного монополя ГЭММ в покое и определяют гиромагнитное отношение электрона.

Внешнее проявление свойств формы и размера волноводов-полей электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) – это его спин, электрический заряд, геометрическая структура с определёнными размерами (длина волны) и индуктируемая масса (в терминах системы СИ или СГС), а также бесконечно долгое время жизни, определяемое запасом его внутренней энергии в форме магнитного монополя. Для сравнения заметим, что запаса внутренней энергии магнитного монополя, рождённого при снятии возбуждения атома, достаточно, чтобы фотон мог пролететь всю глубину нашей Вселенной из-за невидимого горизонта, т.е. 1028 см, за 14 миллиардов лет.

Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном замкнутом микровихроне, в котором поляризованный магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы (узел), где исчезая, заряжает гравитационный монополь. Последний источник, разряжаясь индуктирует электрический монополь и два внешних контура волновода электрона. Одно – переменное электрическое поле-волновода (внешняя спираль), которое рождает уже электрический монополь, как источник, что и реанимирует магнитный монополь – индуктирует и периодически заряжает магнитный монополь на удалении от четверти длины волны (пучность) в узел. Другое – волновод вихревого гравитационного поля – внутренняя спираль разрядки гравитационного монополя, показанная на фото 10.

Так образуется замкнутый канонический одноконтурный фазовый объём с полуцелым спином элементарной частицы электрон с массой в покое, т.е. элементарная частица со структурой активированного гравиэлектромагнитного монополя. Указанные вращательно-поступательные движения магнитного и гравитационного зарядов и определяют направление вектора спина, спиновый магнитный момент и собственный механический момент электрона, а их магнитомеханическое отношение есть величина постоянная для стабильных микрочастиц – это основной закон природы. Как только поверхностный контур электрона замкнулся, его оба внутренних заряда стали пульсировать, проявляя направление спина и обновляя-переизлучая контуры, создавая внешние мгновенные вихревые поля частицы – электрическое, гравитационное и магнитное.

Та энергия магнитного монополя, которая в фотоне идет на рождение трека из зёрен-электропотенциалов длиной более 1028 см, в электроне идет на поддержание и обновление внешних полей, т.е. уже объёма с радиусом, равным длине указанного трека фотона. Ответ на вопрос – как долго может длится этот процесс? Гораздо больше, чем время которое тратит фотон, прилетая к нам из-за горизонта, т.е. более четырнадцати миллиардов лет или 4,2 х 10 24—28 лет. А какие потери энергии его заряда движения? Экспериментально установлено, что за время (14 миллиардов лет) движения фотона очень длинного пути из самых окраин Вселенной он «краснеет» всего лишь до z – 7 или 8.

Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет источник-сферу, которая периодически излучает внутренний направленный волновод определённых размеров из зёрен-гравпотенциалов, который и создаёт суммарный заряд гравитационным потенциалом – заряд массы. При обновлении волновода предыдущий излучается, создавая внешнее гравитационное поле, которое взаимодействует с центральным гравитационным полем Земли. Поэтому он инертен и имитирует собственный заряд массы. Точно также внешний направленный волновод из зёрен-электропотенциалов формирует суммарный заряд отрицательного электрического потенциала и направление спина электрона, а также и его внешнее электростатическое поле. При этом следует заметить, что динамизм излучения внешних полей электрона последовательно вихревой разных по значению зёрен-потенциалов – ближе к узлу находятся большие значения и выталкиваются с большей скоростью, а в пучности уменьшаются до нуля. Поэтому они разные и по дальнодействию, и по разному проявляют свои свойства относительно кластерообразования газоподобного электрического эфира, изучением которых и занимался Тесла.

На фото 12 этой схемы указана структура последовательной динамики излучения переменных по величине гравитационного и электрического зарядов, а также их внешних полей. При формировании внешнего аномального магнитного момента вращающийся магнитный монополь не оставляет после себя стационарно установленных волноводов из магнитных зёрен-потенциалов, а формирует магнитный поток из зёрен-магнитопотенциалов. Другими словами, вращаясь вокруг определённой оси магнитный монополь изменяется по величине, создаёт переменный магнитный ток и излучает наружу поток магнитных зёрен-потенциалов, формируя аномально большой магнитный момент. А размер его волновода и определяет входящее и выходящее из него магнитное поле или маленький магнитик с двумя полюсами. Таким образом все элементарные частицы с противоположными электрическими знаками и имеющие массу всегда будут маленькими магнитиками с двумя полюсами.


В отличие от разрядки свободного магнитного монополя, он производит при разрядке волновод из зёрен-гравпотенциалов, а на удалении в четверть длины волны воспроизводит изменение отрицательного электрического вихревого поля соответствующими зёрнами-электропотенциалами, которые регенерируют (спин полуцелый) тот же по знаку магнитный монополь. Этот процесс противоположен процессу, который происходит с магнитным монополем фотона (спин целый). Другими словами, в свободном вихроне фотона зарядка вторичного магнитного монополя происходит через посредство электрического монополя и находится в функции противодействия предыдущему первичного магнитного монополя. В замкнутом вихроне электрона при разрядке сферы гравиэлектромагнитного монополя (ГЭММ, фото 10—12) активируется вся триада монополей. При этом магнитный монополь выполняет роль заряда энергии при перезарядке, а гравитационный монополь – роль заряда энергии в покое. Электрический и гравитационный монополи обновляют внешний замкнутый контур электрона и формируют внешние электрические и гравитационные поля. Магнитный момент порождается магнитным монополем.

Разрядка гравитационного монополя ГЭММ – это вращательное движение по внутренней красной спирали, т.е. движение спирального зелёного тора с увеличивающимся диаметром. Во время этого движения происходит возбуждение электрического монополя, его внешнего волновода и развёртка-установка зёрен-гравпотенциалов на внутреннем волноводе от большего до меньшего значения величины до замыкания внешней поверхности контура электрона. Затем этот контур обновляется новым периодом обновления, а предыдущий последовательно выталкивается наружу и создаёт внешние поля электрона. Высокая частота таких повторяющихся процессов формирует во внешнем пространстве электрическое, гравитационное поле и магнитный момент, как от стационарного источника (но реально таких бесструктурных источников не существует), т.е. индуктируют массу, электрический заряд, спин и магнитный момент электрона в системе СИ.

Спин микрочастицы – это параметр, который характеризует степень (полную или неполную) завершённости квантового перехода вращательной материи при перезарядке носителя индуктированного заряда энергии с одного знака на другой. Этот параметр в целом определяет форму, тип и состояние движения микрочастицы, т.е. образуется открытый самодвижущийся (фотон) или замкнуто-колебательный (электрон) её фазовый объём. Эти признаки и определяют вид движения частицы – кинетический или безынерционный волновой самодвижущийся. Это определение является прямым следствием закона сохранения энергии. В данном случае заряд энергии электрона (магнитный монополь) не меняет знак при квантовом переходе, поэтому оно неполное, а спин полуцелый.

Структура значений потенциалов сферы гравитационного монополя ГЭММ, аналогична магнитному – большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей – наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный с тем же знаком магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра в центре суммарной сферы.


Итак, разряжаясь из центральной точки расположения зелёной сферы (фото 10), гравитационный монополь с полуцелым спином переходит в электромагнитный микровихрон, т.е. создаёт волновод из зёрен-гравпотенциалов (фото 11), воспроизводит волновод из отрицательных электропотенциалов, который регенерирует-заряжает первичный магнитный монополь с тем же знаком.

Обновляемый волновод из зёрен-гравпотенциалов и создаёт внешнее (фото 12) гравитационное поле, которое имитирует заряд гравитационным потенциалом, массу покоя электрона, а также заряд электрическим потенциалом – электрическое поле электрона.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

А. А. Рухадзе. События и люди. М.: ООО «Научтехлитиздат», Москва 2016 год, стр. 127—130. ISBN 978-5-93728-128-9.

2

На страницу:
6 из 7

Другие книги автора