bannerbannerbanner
Холодный ядерный синтез. L E N R
Холодный ядерный синтез. L E N R

Полная версия

Холодный ядерный синтез. L E N R

текст

0

0
Язык: Русский
Год издания: 2019
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 7

Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон. Мгновенная структура нейтрона с уже разрыхлённой третьей внешней оболочкой, образующей его спин, приведена на фото 5,


Фото 5. Схема нейтрона и антинейтрона


где внешняя оболочка находится в состоянии разрыхления и готовится к распаду. Внешняя оболочка нейтрона (антинейтрона) со структурой π-ноль мезона перед распадом при разрыхлении поочерёдно с определённой частотой генерирует положительную или отрицательную полусферическую оболочку с полуцелым спином, т.е. структуру заряженных мезонов. Аналогичны структуры внешних оболочек перед распадом всех атомных нейтральных ядер, появившихся при рождении на поверхности ЧСТ звёзд и планет или в результате мощного электроразряда, или мощного удара при специальной сварке взрывом, или при воздействии магнитных монополей в кавитационном пузырьке и т. д.

Распад нейтрона зависит от внешних условий и возможен с учётом нейтрон-антинейтронных осцилляций не только с образованием протона, но и антипротона.

Распад нейтрона можно рассматривать и как акт ионизации половины внешней оболочки ядра-нейтрона (частицы типа мюона) с испусканием электрона и антинейтрино за счёт внутренних процессов и рождением протона. Половина средней положительной (отрицательной) оболочки нейтрона после распада оголилась и уже не компенсируется полем вылетевшей отрицательной (положительной) оболочки, которая превратилась в электрон (позитрон) распада. Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней положительной превращает его в протон (антипротон) с геометрической формой внешней части представленной на фото 6, слева (справа).

Протон в состоянии покоя.


Фото 6. Схемы ядерных электрических оболочек протона (слева) и антипротона (справа) без указания гравитационых. В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ.


Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой.

Даже две внешние положительные оболочки порождают такой недостаточный положительный (отрицательный) электрический заряд из зёрен-потенциалов на поверхности протона (антипротона), который один электрон (позитрон) в атоме водорода (антиводорода) перекрывает полностью и даже остаётся излишек – образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона. Поэтому более стабильна молекула водорода.

Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах.

Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, т.е. с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы – ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения (он пропорционален массе) и синхронизм нарушается. Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, т.е. путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон (фото 6) поэтапно превращается в дейтрон (фото 7), тритон (фото 16) и т.д., а при встречных соударениях с аналогичными продуктами ускоренных антипротонов путём осевой имплозии, переходящей сгустками в центральную имплозию, порождающей многооболочечную структуру ядер (фото 9а) и рождаются антидейтроны, антигелий-3 или антитритий.

Превращения протона в плазмоиде Вачаева25

Высокоинтенсивные электроимпульсные короткие (5—50 микросекунд) разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез.

Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц (производство электроэнергии) и 30—60 ГГц (холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии). Для некоторых элементов получены значения предельных токов разряда (кА /мм2), при которых еще возможна реакция превращения-синтеза структуры атомных ядер: Li = 23,8; Na = 29,5; К = 26,2; Pb = 21,6; Cs=19,1;Cu =44.0; Au = Ag= 43,0; Be =39,2; Ca =78,0; Fe = 47,1; Zn = 42,4;Pt = 40,0; Sb =40,8;Sn = 43,8; Al = 14,25. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Вода, являющаяся продуктом реакции после прохождения реактора, имеет следуюцие характеристики и состав: рН – 6,0—6,8; Д2О – тяжёлая вода 0,05%; Т2О – сверхтяжёлая вода 0,05%. Таким образом, наличие дейтронов и тритонов26 в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту – переход с увеличением энергии в новый более тяжёлый элемент.

Внешний слой оболочки нейтрона (антинейтрона) имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда – у протона он положительный, у антипротона отрицательный. Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона27 или антипротона со структурой мюона.

Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов.

Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка (запорный слой со структурой мюона) протона. Затем распадается нижележащая оболочка со структурой π-ноль мезона. Точнее, вылетает ядерный вихрон в поле ядерного остатка, образует промежуточное состояние со структурой π-ноль мезона, которое и распадается на два гамма-кванта. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую (высокочастотную) К-оболочку. В свободном состоянии К-ноль мезоны также распадаются в гамма-кванты через свои промежуточные состояния в форме π-ноль мезонов. Этот процесс – процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, т.е. в безмассовую форму энергии движения фотонов – играет самую главную роль в производстве энергии звёзд и планет.

У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней (фото 6) порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада – это наиболее стабильная частица из числа всех известных.

Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона (фото 7), посредством слияния-объединения близких по частоте связано-замкнутых дебройлевских квантов-вихронов. В оболочках протона и нейтрона магнитные монополи основное время находятся в состоянии вращения и движения на волноводах от центра к поверхности. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс соответствующего слияния и энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер – уменьшается, частота и число оболочек – изменяются.


Фото 7. Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон.


Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр – 4,1 х 10—13 см, а масса в СИ – 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой (по формуле – охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения) и характеризует последовательное взаимодействие быстрых ядерных вихронов – сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Эта ядерная реакция очень ярко демонстрирует пластичность свойств вихронов, оказавшихся в замкнутом пространстве запертым внешней оболочкой с целочисленным спином и структурой волноводов аналогичных заряженным π-мезонам, но связанных с внутренними оболочками. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая – лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения.

При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном (или наоборот) даёт нестабильный изотоп сверхтяжёлого изотопа водорода – тритон (тритий). С другой стороны, другая подобная реакция – протон плюс антипротон из-за недостаточности в 906 Кэв до пороговой энергии начала ядерной реакции синтеза, приводит лишь к образованию нестабильной промежуточной частицы, которая начинает распадаться, путём последовательной распаковки внешних оболочек со структурой π-ноль мезона и излучением пары соответствующих гамма-квантов. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах28. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди.

Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц.

Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ – это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R- и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной.

Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек (фото 4—5— 6) и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона.

Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Масса имеет отрицательный знак заряда по сравнению со знаком заряда центрального ядра его поля тяготения Земли и обусловлена излучением обновляемых волноводов из зёрен-гравпотенциалов, формирующих внешнее поле – суммарным зарядом гравитационного потенциала из составляющих оболочки замкнутых частиц со спином ½. Центральная ядерная оболочка (типа К-ноль мезон) с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона.

Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма.

Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов29. Так, например, с участием лептонов – мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Показательным примером, является также распад гиперонов (без участия лептонов) на протоны, нейтроны и π-мезоны.

1.3 Нейтральные ядра

Основным источником производства этих частиц являются ядра ЧСТ нейтронной звезды-пульсаров, а также всех светящихся звёзд, карликов и планет. Другие источники обнаружены во всех генераторах холодного ядерного синтеза (LENR) при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. д.

Структура этих частиц – центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне – фото 4.


Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД.


Каждая оболочка (фото 8) – биполярная со структурой типа π-ноль мезона, составленная из двух противоположных по электрическому знаку замкнутых частиц со спином ½ и по структуре схожих со структурой мюона. Каждая смежная практически полностью приближены друг к другу на минимально возможное расстояние, равное 1/4 длины волны, и определяют размер ядра путём стягивания-притяжения друг к другу источников четверть-волноводов. Равновесное состояние положения источников-сфер волноводов в указанной схеме обеспечивается равенством сил притяжения разных по знаку и величине зарядов энергии, но более близко размещённых, по сравнению с одинаковыми по величине зарядами энергии, но диаметрально противоположными сферами ГЭММ и более удалёнными друг от друга на полволны. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, т.е. в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y (cм. таблицу мезонов). Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака (электронов, САП) с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция.

На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек (фото 9) с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство.

Ядерно-мезонная плазма.

После распада внешней оболочки, образующей спин и заряд ядер со структурой положительного мюона (спин ½) или положительного мезона (спин 0), происходит распад внутренней нейтральной оболочки со структурой пи-ноль мезона, которая в зависимости от внешних полей распадается по каналу бета-плюс или бета-минус. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются (синтез ядер) с положительными. Однако аннигиляции двух противоположных ядер, как, в случае, протона и антипротона не происходит, а идут следующие процессы:

– кулоновского ядерно-ионного взаимодействия с образованием заряженных электрически сверхтяжёлых ядерных кластеров с первичным ядром, имеющим целочисленный спин, если реагенты достаточно охлаждены,

– вынужденной каскадной распаковки оболочек ядер с целым и полуцелым спинами с выделением громадной энергии, передаваемой продуктам реакции; эти продукты в форме фрагментов ядерных частиц со структурой пи-мезонов, но с меньшей массой, являются строительным материалом для надстройки оболочек первичных соседних ядер,

– взаимодействия отрицательного ядра с полуцелым спином с положительным ядром с полуцелым спином приводит к образованию стабильного тяжёлого ядра, т.е. идёт ядерная реакция синтеза фрагментов ядер с разными знаками,

– все эти процессы сопровождаются короткими рентгеновскими вспышками аннигиляции (511 Кэв) электронов и позитронов на фоне сплошного тормозного рентгеновского излучения от 15 до 250 Кэв, а также вспышками облаков электрического эфира.

Формула низкоэнергетических ядерных превращений в соответствующей плазме сводится к следующему:

– рождение коллектива «тяжёлых» магнитных монополей макровихронов резонансного диапазона в общем потоке с электрическим эфиром и холодной плазмы в поле нейтральных атомных ядер в нижней мантии,

– начало движения магнитных макромонополей и создание продуктов от резонансных взаимодействий с помощью электронных макровихронов и холодной плазмы,

– локальная частичная обдирка ядер от электронов (или бета распад) в нейтральных атомах, лежащих на пути волновода, удвоенными потенциалами фазовых объёмов макровихронов,

– сопровождение процесса обдирки интенсивным выходом потоков электрического эфира, светового и рентгеновского излучения,

– время жизни активного состояния плазменного кластера ядер-мезонов в одной точке 10—23 с и распространение от неё цепной реакции в 4π со скоростью света,

– распад путём каскадной распаковки волноводами «тяжёлых» магнитных монополей зоной холодной плазмы внешних и внутренних оболочек первичных ядер с выделением энергии и образованием соответствующей линейки лёгких изотопов таблицы Менделеева, а также резонансных ядерных вихронов, образующих фрагменты этих оболочек со структурой пи-мезонов или гравиэлектромагнитных диполей,

– резонансное концентрическое наращивание с помощью этих фрагментов (квазимезонов, по типу матрёшек) внешних оболочек в ядерно-мезонной плазме на первичные ядра без их внешней оболочки (нейтральные ядра) с превращением их в соответствующий спектр тяжёлых ядер, причём, чем больше атомный номер нейтрального ядра, тем больше атомный вес синтезированных ядер,

– синтез в ядерно-мезонной плазме ядер с противоположными знаками с образованием тяжёлых ядер и сверхтяжёлых кластеров разного типа (ядерные молекулы), т.е. ионные ядерные реакции с помощью холодной плазмы,

– вылет потока отработанного и трансформированного СВЧ излучения и мощного потока излучения этой плазмы твёрдого тела,

– охлаждение плазмы и последующая низкоэнергетическая стабилизация созданных изотопов с присоединением электронов, образованием на поверхности планеты атомов, с излучением оптических и других видов снятия возбуждения атома,

– время жизни продуктов низкоэнергетической ядерно-мезонной плазмы различно, колеблется от времени стабилизации и высвечивания возбуждённых атомов, но не превышает нескольких часов.


Другими словами, процесс, приводящий к взаимодействию низкоэнергетических фотонов и фононов высокой интенсивности около 100 Вт/см2 с веществом является имплозия заряда энергии в виде сферы магнитного (гравитационного) монополя микровихрона в поле атома или ядра с помощью волновода из зерен-потенциалов длиной в четверть длины волны. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 – 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 1014 см. Это эффективно отделяет реакции LENR (НЭЯР) от аналогичных реакций Гигантского резонанса с энергией фотонов от 10 до 30 Мэв.


Высокоэнергетическая ядерно-мезонная плазма – это новое состояние материи, в состав которой в активной зоне в мантии вблизи ядра ЧСТ за время менее 10 -23 секунды входят:

– распадающиеся ядра, образующие на мгновение промежуточный кластер плотного облака замкнутых магнитных монополей,

– всё многообразие по частоте возбуждённых и ионизированных замкнутых биполярных ядерных вихронов, образующих внутренние и внешние оболочки этих ядер (квазимезонов – гравиэлектромагнитных диполей),

– смесь в «шубе» из облака электрического эфира и дебройлевских фотонов и мезонов, связанных с ядрами,

– через мгновение-промежуток времени 10—23 сек после взаимодействия и начала образования кластера взаимодействий, в её состав уже входит всё разнообразие микрочастиц, которые создаются движущимися и уже провзаимодействовавшими (согласно выше определённым свойствам) вихронами, в том числе и аннигиляция электронов с позитрона,

– нейтральные ядра, по типу нейтронов, но более тяжёлые,

– лёгкие заряженные ядра, или частицы, в том числе и отрицательные, например, отрицательные мюоны, образовавшиеся от распада первичных,

– более тяжелые по сравнению с первичными, образовавшиеся в результате центрально-концентрического слияния менее энергичных замкнутых ядерных вихронов (квазимезонов) вокруг внешних оболочек первичных ядер,

– сверхтяжёлые кластеры по сравнению с тяжёлыми, образованные кулоновским ионно-ядерным взаимодействием лёгких положительных и тяжёлых отрицательных ядер с образованием ядерных молекул или ядер с кластерной структурой.

На страницу:
4 из 7

Другие книги автора