bannerbanner
Нейротон. Занимательные истории о нервном импульсе
Нейротон. Занимательные истории о нервном импульсе

Полная версия

Нейротон. Занимательные истории о нервном импульсе

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
5 из 7

В девяностых годах XIX века Кахаль обобщил все эти наблюдения и сформулировал четыре принципа, составляющих нейронную доктрину – теорию организации нервной системы, которая и сейчас является абсолютной основой неврологии.

Первый принцип состоит в том, что нейрон является основным структурным и функциональным элементом мозга, то есть мозг состоит из нейронов, которые служат его элементарными сигнальными единицами.

Во-вторых, Кахаль предположил, что окончания аксонов одного нейрона передают информацию дендритам другого только в специальных участках, которые Шеррингтон впоследствии назвал синапсами.

В-третьих, Кахаль сформулировал принцип специфичности связей, согласно которому нейроны не связываются с другими нейронами без разбора, но каждый взаимодействует лишь с определёнными нейронами и ни с какими другими. Он использовал этот принцип, чтобы показать, что связи нейронов друг с другом образуют определённые последовательности, которые он назвал нейронными цепями. Сигналы распространяются по этим цепям определённым, предсказуемым образом.

Отдельный нейрон посредством многих окончаний аксона обычно связан с дендритами многих клеток-мишеней. Так единственный нейрон может широко распространять получаемую им информацию по различным нейронам-мишеням, иногда находящимся в разных участках мозга. Напротив, дендриты нейрона-мишени могут получать информацию от окончаний нескольких других нейронов. Тем самым в нейроне может обобщаться информация, поступающая от нескольких нейронов, даже расположенных в разных частях мозга.

На основе своего анализа связей, наблюдаемых в мозге, Кахаль представил мозг как орган, состоящий из специфических предсказуемых нейронных цепей, в то время как преобладавшая точка зрения предполагала, что мозг есть рассеянная нервная сеть, в которой повсюду происходят взаимодействия всех мыслимых типов.

Проявив поразительную проницательность, Кахаль пришёл к своему четвёртому принципу – динамической поляризации. Согласно этому принципу, сигналы движутся по нейронным цепям лишь в одном направлении. Информация передаётся от дендритов каждой клетки к её телу, оттуда по аксону к дендритам следующей клетки, и так далее. Этот принцип однонаправленной передачи сигналов был необычайно важен, потому что позволял связать все компоненты нервной клетки с единственной её функцией – сигнальной [8].


Рисунок 13. Рисунки Кахаля приложение к нобелевскому докладу


К сожалению, собственно термин «нейронная доктрина» Кахалю не принадлежит. Его автор – известный немецкий анатом В. Вальдейер (W. Waldeyer), который в 1891 году опубликовал обширный труд главной идеей которого был вывод о том, что клеточная теория применима и к нервной системе. Кстати, именно Вальдейер предложил называть нервную клетку «нейроном», а клеточная теория с его лёгкой руки, применённая к нервной системе, стала известна как «нейронная доктрина». Кахаль, в сою очередь, так до конца и не мог простить Вальдейеру его доктрины, поскольку считал её своей собственной.


Тем не менее «нейронная доктрина» оказалась крепким орешком для коллег Кахаля. Ему пришлось основать журнал для продвижения своих идей, но даже это не помогло, так как лишь немногие медики читали испанские журналы. Поэтому в 1889 году он отправился на конференцию в Германию, величайший научный центр того времени, и даже сам заплатил за проезд, столкнувшись с отказом университета в приглашении.

К счастью для Кахаля, великолепные рисунки нейронов завоевали ему некоторых сторонников. В следующие десять лет нейронная доктрина укрепилась в научных кругах, хотя далеко не все соглашались с ней. Многие учёные отказывались поверить Кахалю, и в 1900 году две армии неврологов выстроились по разные стороны баррикад; «ретикулисты» Гольджи и «нейронщики» Кахаля. [8]

Но история любит хорошие шутки, поэтому случилось так, что комитет Нобелевской премии решил, что Рамону-и-Кахалю и Гольджи следует разделить Нобелевскую премию по медицине/физиологии 1906 года, хотя эти два учёных придерживались абсолютно противоположных взглядов на то, как работает нервная система. И если один из них был прав, другой наверняка нет.

Кахаль вспоминает, что, возражая Гольджи в научной трактовке результатов, он всегда «высказывал ему восхищение, и во всех моих книгах можно прочесть восторженные отзывы о вкладе учёного из Павии», чего, к сожалению, нельзя сказать о Гольджи, который то и дело норовил исказить воззрения испанского коллеги. Даже в своей нобелевской речи он просто проигнорировал открытия и заслуги Рамона-и-Кахаля. Вспоминая это, тот пишет в своей автобиографии: «Какая жестокая ирония судьбы – соединить в пару, как сиамских близнецов, сросшихся туловищами, научных противников с такими противоположными характерами». Это определённо не была Нобелевская премия мира.

Как и все великие открытия, нейронная доктрина Кахаля не только ответила на многие вопросы, но и породила множество новых. Вот самый важный из них: если нейроны отделены друг от друга, то как сигнал проходит через промежуток между ними? Казалось, имеются лишь две возможности – электрический ток или химические вещества. Опять-таки каждая сторона этого спора имела своих защитников, где «радисты» выступали за электричество, а «повара» – за биохимию [6].

История синапса

Синапс (греч. σύναψις, от συνάπτειν – соединение, связь) – место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

Термин синапс ввёл известный английский нейрофизиолог Чарльз Шеррингтон (Charles Scott Sherrington, 1857 – 1952) в 1897 году для обозначения гипотетического образования, специализирующегося на обмене сигналами между нервными клетками.

В 1906 году Шеррингтон сформулировал основные принципы нейрофизиологии в до сих пор изучаемой всеми специалистами-неврологами книге «Интегративная деятельность нервной системы» (The Integrative Action of the Nervous System).

Следует отметить, что в те времена господствовала гипотеза о передаче информации с помощью биоэлектрических импульсов. Большинство исследователей склонялось в XIX столетии к мысли, что переход возбуждения с нервного волокна на мышцу – это физический процесс, представляющий собой электрическое явление. Поэтому понятие, введённое Шеррингтоном, изначально обозначало место электрического контакта между клетками, обеспечивающего передачу нервного импульса.

Позднее, в 1932 году Шеррингтон (совместно с Э. Эдрианом) «За открытия, касающиеся функций нейронов» удостоен Нобелевской премии по физиологии и медицине.

Кураре

В 1851 году французский физиолог Клод Бернар (Claude Bernard; 1813—1878), получив кураре в подарок от Наполеона III, своими опытами однозначно доказал, что яд никак не влияет ни на мышцу, ни на нерв.

Бернар заметил, что у животных, отравленных ядом кураре, уже через минуту после смерти нервы прекращают реагировать на любые раздражения. Изучив это странное явление, Бернар пришёл к выводу, что кураре не отключает способность самой мышцы сокращаться, а нерва – проводить возбуждение. Вывод: ни нерв, ни мышца не затронуты действием яда, нарушен только переход возбуждения с нерва на мышцу. Но тогда было непонятно, каким образом кураре убивал жертву. Даже спустя двадцать с лишним лет, после опыта Бернара это оставалось загадкой.

В 1877 году Дюбуа-Реймон писал по этому поводу: «Из известных естественных процессов, которые могли бы передавать возбуждение, сто́ит, по-моему, говорить только о двух. Либо на границе сокращающейся ткани имеет место раздражающая секреция… сильно возбуждающего вещества, либо это явление имеет электрическую природу».

Дальнейшие опыты с кураре дали учёным повод предположить, что между мышцей и нервным окончанием имеется пространство, заполненное неким веществом, чувствительным к действию яда кураре.

Именно, допустив существование синапса и гипотетического вещества, находящегося в нём, можно было объяснить, каким образом кураре убивает. Яд, попавший в организм, лишает вещество синапса способности передавать нервный импульс от нерва к мышце.

Впервые такую мысль сформулировал английский физиолог Т.Р.Элиот в 1904 году. Эта гипотеза основывалась на сходстве с действием адреналина на изолированное сердце. Тем не менее идея не была воспринята его современниками.

Прямое доказательство тому, что при раздражении нервов выделяется химическое соединение, оказывающее действие на изолированное сердце, было получено в работах австрийского фармаколога Отто Лёви (об этой леденящей сердце истории расскажу чуть ниже).

«Повара» и «радисты»

Сантьяго Рамон-и-Кахаль выяснил, что нейроны являются отдельными клетками. В конечном счёте между ними оставался микроскопический промежуток, названный синапсом. Но как именно нейроны передают сигналы через этот промежуток – с помощью химических веществ или электрических импульсов – оставалось неясным. Сторонников разных направлений называли «поварами» и «радистами» соответственно, и их противостояние повлияло на добрых 50 лет развития неврологии.

Сначала «радисты» имели преимущество. Передача электрических импульсов была модным новшеством, а химическое взаимодействие выглядело устаревшим, сродни учению о «четырёх телесных жидкостях». Кроме того, сторонники электрической теории имели экспериментальные свидетельства того, что нейроны при возбуждении всегда вырабатывают электрический импульс. Этот импульс распространяется по аксону, и не было причин сомневаться в том, что нейроны могут пользоваться электричеством и для внешних сообщений друг с другом. [6]

Целый ряд мрачных экспериментов с сердцами лягушек, казалось, также служил подтверждением этой теории. К началу ХХ века биологи знали, что, если извлечь сердце у лягушки и погрузить его в физиологический раствор, оно продолжит биться само по себе. Сердце просто плавает там, сокращаясь – лишённое тела, оно каким-то фантастическим образом сохраняет жизненную силу. Учёные обнаружили, что можно замедлять или ускорять частоту сокращений, посылая электрические сигналы в разные нервные окончания, ведущие к сердцу.

Между тем было замечено, что и небольшое количество определённых химических веществ также может сходным образом ускорять или замедлять сердцебиение. Но поскольку эти вещества были искусственными, их воздействие сочли лишь странным совпадением.

Сон Отто Лёви, открытие химического синапса

Отто Лёви (Otto Loewi, 1873 – 1961), молодой учёный, посетивший Англию в 1903 году, нашёл эксперименты с сердцами лягушек весьма увлекательными, и по возвращении в Австрию решил исследовать связь между нервами, электричеством и химическими веществами. Однако Лёви был человеком рассеянным и мечтательным и на долгие годы отложил эту идею, тем более что вскоре он стал успешным фармакологом. Между тем доктрина «радистов» набирала популярность.

В конце концов, Лёви вернулся-таки к исследованию сердец лягушек в 1920-х годах, хотя и при необычных обстоятельствах.

Согласно рассказу самого Лёви, однажды ночью в 1921 году он заснул за чтением книги. Ему приснился сон, в котором он представил эксперимент, который может положить конец спорам о том, как нервы общаются друг с другом. Он проснулся посреди ночи, набросал несколько заметок об этом потенциально революционном эксперименте, а затем снова заснул. К его великому разочарованию, когда он проснулся утром, то не смог разобрать собственные ночные записи.

Следующей ночью он проснулся в 3 часа после того, как снова представил эксперимент. На этот раз он не стал полагаться на свой почерк, поэтому бросился в лабораторию, чтобы попробовать эксперимент. Лёви извлёк два бьющихся сердца лягушек и опустил их в их в две мензурки с физиологическим раствором, где они продолжали биться. Затем он стимулировал блуждающий нерв в одном из сердец – процедура, которая замедляет частоту сердечных сокращений. Он извлёк солевой раствор из сосуда с сердцем, чей блуждающий нерв он стимулировал, и перелил его ко второму сердцу. Это вызвало замедление его сокращений. Тогда он воздействовал электричеством на другие нервные волокна в первом сердце ускорив его биение. Перенос солевого раствора заставил второе сердце ускориться, как он и увидел во сне.

Лёви интерпретировал эти результаты так, что блуждающий нерв выделил какое-то вещество, которое вызвало изменение частоты сердечных сокращений. Тот факт, что вещество могло затем быть перенесено ко второму сердцу с помощью солевого раствора, укрепило его уверенность, что воздействие было химическим. Лёви назвал предполагаемое химическое вещество «vagusstoff» (в переводе с немецкого означает «вещество вагуса»).

Прошло ещё несколько лет, прежде чем сэр Генри Дейл (Henry Hallett Dale, 1875 – 1968) выделил это вещество и назвал его ацетилхолином.

Лёви и Дейл разделили Нобелевскую премию в 1936 году за то, что продемонстрировали важность химической передачи в нервной системе, а история Лёви об эксперименте, который ему привиделся во сне, будет впоследствии почитаться в истории нейробиологии. По правде говоря, Лёви, вероятно, не проводил эксперимент в ранние утренние часы, как он утверждал. Но он был известен как рассказчик склонный к драматизму. По словам Дейла, Лёви сказал ему, что он проснулся второй ночью и просто постарался сделать записи аккуратно, чтобы спокойно провести эксперимент на следующий день. Тем не менее, популярная версия этой истории немного более запоминающаяся, и любому, кто занимается ежедневной скукой лабораторных исследований, будет непросто обвинить Лёви в том, что он хотел сделать своё открытие чуть более драматичным.

Эксперимент Лёви оказал бесценную поддержку «поварам» и послужил доказательством, что нервная система, по крайней мере у некоторых животных, использует химические вещества для передачи сообщений.

P.S. Нейробиологи до сих пор восхищаются оригинальностью эксперимента Лёви. Но сны не приходят ниоткуда, и никогда не снятся неподготовленным учёным. Решение, найденное во сне это всегда результат обобщения и осмысления большого багажа предварительно накопленных знаний.

Замечательному сну Отто Лёви тоже кое-что предшествовало…

В лаборатории И. П. Павлова в 1895 году студент Военно-медицинской академии И. Л. Долинский провёл эксперимент, в результате которого он установил, что введение кислоты в двенадцатиперстную кишку вызывает значительную секрецию поджелудочной железы.

Развили это наблюдение английские физиологи Уильям Бейлисс и Эрнест Старлинг которые в январе 1901 года повторив опыт Долинского сделали вывод, что существует некоторое вещество, выделяемое двенадцатиперстной кишкой, которое стимулирует секрецию поджелудочной железы.

Учёные пошли дальше – они извлекли часть двенадцатиперстной кишки у только что забитого животного, измельчили её и погрузили в раствор соляной кислоты. Небольшое количество кислотного экстракта набрали в шприц и ввели в кровь другого животного.

Его поджелудочная железа сразу отреагировала выделением пищеварительного сока, хотя животное перед опытом не кормили. Исследователи пришли к выводу: слизистая оболочка кишки, обработанная кислотой, продуцирует некое химическое вещество, которое поступает в кровь. Кровоток доставляет это вещество по системе кровообращения ко всем участкам тела, включая и поджелудочную железу. Когда вещество достигает её, оно каким-то образом стимулирует выделение ею пищеварительного сока.

Так в 1902 году было обнаружено вещество, названное секретином. Позднее Уильям Харди (William Hardy) предложил все подобные вещества называть гормонами.

А как раз накануне знаменитого сна Леви – буквально за год до него, произошло следующее подозрительно похожее событие.

Известный канадский физиолог Фредерик Бантинг долгое время безрезультатно искал лекарство от сахарного диабета. Но однажды в 1920 году во сне он увидел решение – проснувшись посреди ночи, Бантинг записал методику проведения эксперимента: «Перевязать протоки поджелудочной железы у собаки. Подождать шесть-восемь недель. Удалить и экстрагировать».

Следуя этой инструкции он и его помощник Чарльз Бест перевязали протоки поджелудочной железы у подопытной собаки. Через несколько недель, когда железа атрофировалась, учёные, выделили из неё экстракт, а затем удалили орган. Вскоре собака стала умирать от сахарного диабета, тогда Бантинг ввёл ей сохранённый экстракт – уровень глюкозы упал, и собака успешно вышла из диабетической комы. Так появился инсулин.

Этот сон принёс Фредерику Бантингу Нобелевскую премию.

Чрезвычайно продуктивные сны снились учёным в 1920—21 годах.

Победа «поваров»

Тем временем, для Лёви и его сторонников сражение на поприще науки было выиграно лишь наполовину. «Радисты» допускали, что организм может пользоваться химическими сигналами на периферии нервной системы, контролирующей конечности и внутренние органы. Но в мозге, по их мнению, нервные импульсы могли предаваться только с помощью электричества. Они располагали вескими аргументами в пользу такого мнения – нейроны вырабатывали электричество при любой активности.

«Радисты» также иронично утверждали, что химические вещества – «материал для слюны, соплей, мочи и пота» – действуют слишком медленно для процессов, происходящих в мозге. Только электричество, которое распространяется мгновенно, может стоять за мышлением. Как когда-то сторонники ретикулярной теории Гольджи, «радисты» были убеждены, что работа нервных клеток отличается от деятельности прочих клеток организма.

Так, например, А. А. Ухтомский в 1935 году, не отрицая существования нейротрансмиттеров полагал, что они в лучшем случае подготавливают нейрон к восприятию электрического сигнала.

Но тем, кто считал мозг чем-то исключительным с биологической точки зрения, пришлось постепенно сдавать свои позиции. На роль посредников «между электричеством и электричеством» химические вещества всё-таки приняли. За следующие несколько десятилетий было открыто множество нейротрансмиттеров – веществ, передававших сигналы исключительно в мозге. Эти открытия подорвали доминирование «радистов», и в 1960-е годы большинство учёных включали нейротрансмиттеры в своё понимание работы нейронов. [6]

Учёные сошлись на том, что при возбуждении по аксону нейрона от сомы до терминали распространяется электрический импульс – то самое электричество, за которое ратовали «радисты». Но электрический сигнал не может преодолеть синаптическую щель даже если её ширина всего 0,00002 миллиметра. Поэтому аксону приходится переводить электрические сигналы на язык химических соединений, которые могут преодолеть этот промежуток.

А самые упорные «повара» даже стали настаивать, что во время работы нервов, или при прохождении нервного импульса, в них происходит «химические процессы распада и восстановления нервного вещества».

Ныне считается, что большинство синапсов, в том числе те, что исследовались в разгар этого спора, имеют химическую природу. Но некоторые нейроны образуют с другими электрические синапсы. В таких синапсах между двумя клетками появляются небольшие мостики, позволяющие электрическому току проходить из одной клетки в другую – примерно так, как некогда предсказывал Гольджи [8].

Таким образом, как это иногда бывает с научными спорами, обе стороны оказались в чём-то правы.

Так или иначе, химический аспект оказался гораздо более сложным. В мозге обнаружены сотни видов нейронов, электрические импульсы в их передаются практически одинаково. Но при этом для взаимодействия между ними в синапсах задействованы сотни разных нейротрансмиттеров, передающих различные нюансы.

Нейротрансмиттеры воздействуют на электрическую возбудимость нейрона всего двумя способами: возбудить или ингибировать. Каждую секунду нейрон получает тысячи возбуждающих и ингибирующих сигналов одновременно, некоторые считают, что по умолчанию тело клетки ингибировано. При этом разные типы нейронов используют разные нейромедиаторы. Так что каждый нейрон должен тщательно «распробовать суп» из окружающих его возбуждающих и тормозящих веществ, прежде чем ответить на управляющее раздражение.

В становлении концепции химической передачи в синапсах, значительную роль сыграли исследования российских учёных – А.Ф.Самойлова, А.В.Кибякова, А.Г.Гинецинского.

Например, Самойлов изучая температурные изменения в процессе передачи возбуждения с нерва на мышцу пришёл к выводу, что они в большей степени подчёркивают химическую, а не физическую природу передачи возбуждения.

Работами А. В.Кибякова (1933) было показано, что передача возбуждения с помощью химических веществ осуществляется не только в нервно-мышечных соединениях, но и в соединениях между нервными клетками.

Гинецинский в 1935 году обнаружил, что химические вещества в нервно-мышечных синапсах вызывают на небольшом участке мембраны изменение потенциала, названного впоследствии потенциалом концевой пластинки.

Австралийский нейрофизиолог Джон Эклз был одним из самых ярых сторонников идеи электрических синапсов. В 1930-х и 1940-х годах он решительно выступал против того, что нервные клетки связываются друг с другом химически. По мнению Эклза, передача нервных импульсов была слишком быстрой, чтобы молекулы могли участвовать в этом процессе. Только электрическое взаимодействие могло обеспечить распространение нервных сигналов с такой скоростью. Он даже измерил эту скорость в 1935 году.

Невзирая на доказательства Отто Лёви и Генри Дейла продемонстрировавшие химическую связь нервной системы с двигательными нейронами, Экклз утверждал, что всё это неприменимо для нейронов мозга.

В 1944 г. он познакомился с Карлом Поппером – одним из крупнейших философов XX века, занимавшихся проблемами науки. Поппер полагал, что определяющая роль в научном прогрессе принадлежит опровержению гипотез. Он смог убедить Экклза попытаться опровергнуть собственную гипотезу, уверив его в том, что это ничуть не менее важно, чем найти доводы в её пользу.

При изучении нейронных цепей Экклз обнаружил, что некоторые из этих цепей являются не возбуждающими, а тормозными. В этих случаях возбуждение пресинаптического нейрона вызывает так называемый тормозной постсинаптический потенциал (ТПСП). С позиции «радистов» невозможно было объяснить, каким образом возбуждающий потенциал действия пресинаптической клетки может в синапсе превращаться в тормозящий постсинаптической.

За эту работу, опровергающую идею, которую он долгие годы отстаивал, спустя 12 лет, в 1963 году Экклз получит Нобелевскую премию.

Можно было говорить о решительной победе химической теории передачи информации в синапсах.

Электрический синапс

Но вот в 1957 году был открыт синапс, в котором сигнал передавался почти без задержки, передача мало зависела от температуры и почти не блокировалась магнием. Был открыт первый чисто электрический синапс.

Спор между «радистами» и «поварами» возобновился с новой силой. В 1959 году Дэвид Поттер и Эдвин Фершпан обнаружили эффективную электрическую связь между гигантским аксоном и аксоном моторного нейрона в брюшной цепочке рака. Было установлено, что возбуждение в виде электрического потенциала беспрепятственно и мгновенно передаётся в месте контакта от одного аксона к другому без всяких нейромедиаторов.

В нервной системе млекопитающих электрические синапсы тоже обнаружены, чаще всего они образуются между дендритами однотипных, близко расположенных нейронов, тогда как химические и смешанные – между аксонами и дендритами при их последовательном соединении. Однако, в ЦНС млекопитающих и человека имеется всего около 1% электрических синапсов, они более характерны и преобладают в нервных системах низкоорганизованных животных.

Появился новый термин – электрические синапсы – это места высокоспециализированных контактов между нейронами, где происходит прямая передача электрических потенциалов от одной клетки к другой. Электрические синапсы могут связывать между собой не только нейроны, но и многие другие типы клеток. Такими синапсами связаны рецепторные клетки, кардиомиоциты, гладкомышечные клетки, клетки печени, глиальные, эпителиальные и др.

Электрические синапсы также, как и химические имеют пресинаптическое образование, синаптическую щель и постсинаптическую мембрану. Синаптическая щель у них значительно уже, чем у химических (у электрических синапсов – от 2 до 5 нм, тогда как у химических синапсов – 20—50 нм). Отличительная особенность пресинаптического образования – отсутствие пузырьков с медиатором.

Выделяют следующие свойства электрических синапсов.

· Отсутствие центральной задержки. · Проведение возбуждения в обе стороны. · Относительно высокая лабильность[1]. · Являются практически неутомляемыми образованиями. · Не чувствительны к химическим соединениям. · В электрических синапсах отсутствует явление посттетанической потенциации. · Более низкая надёжность в передаче информации.

На страницу:
5 из 7