Полная версия
Погода – Климат – Человек
Количество и относительное значение климатических переменных менялись по мере развития научных исследований в этой области. Сегодня в центре внимания находятся уже другие переменные, и число их существенно возросло. Если раньше ученые в изучении климата опирались на сравнительно обособленные наблюдения отдельных переменных, то сегодня климатологи пытаются включить в интегрированный исследовательский подход как можно больше различных переменных, чтобы лучше понять климатическую систему в целом, т. е. учитывая все факторы – океаны, морские льды, биосферу и тому подобное.
В позапрошлом столетии границы климатических исследований в значительной степени зависели от технических возможностей установки измерительных метеорологических приборов. В 1920-х годах появилась возможность с помощью шаров-зондов, воздушных змеев, самолетов и радиозондов вести наблюдения на различной высоте. К слову, в процессе этих наблюдений в начале 1920-х годов была открыта стратосфера. Восхождения в горы и небезопасные полеты на воздушном шаре показали, что температура при подъеме на 100 м понижается где-то на 0,7 °С. На основании этого наблюдения Герман фон Гельмгольц (1821–1894) сделал вывод, что на высоте около 30 метров должен быть достигнут абсолютный ноль (–273 °С). Когда после первых измерений с помощью беспилотных воздушных шаров стало ясно, что после достижения 11-километровой высоты начинается зона постоянной температуры, многие метеорологи вначале усомнились в правильности измерений, но это была граница между тропосферой и стратосферой.
Лишь совершенно новые методы наблюдения привели к кардинальным переменам в климатологии, которая на протяжении вот уже нескольких десятилетий является не географической дисциплиной, а, скорее, физикой и химией окружающей среды. Неудивительно, что подобные тенденции вдохновили в первую очередь молодых метеорологов и что именно они, в свою очередь, способствовали смене парадигмы1. В следующем разделе мы рассмотрим концепцию климата в этой «новой» климатологии.
3.2. Климат как естественнонаучная система
Чтобы показать разницу между описательной климатологией, основанной на географической традиции, и новыми, физико-климатическими исследованиями, мы для начала, в качестве примера типично «физического подхода» в метеорологии, рассмотрим парниковую теорию шведского химика Сванте Аррениуса (1859–1927). Сегодня многие ученые считают Аррениуса первооткрывателем парникового эффекта. Как это всегда бывает в науке, споры о том, кто «действительно первым» открыл, сформулировал, изобрел и так далее, совершенно бессмысленны. В действительности в науке одновременно и независимо друг от друга совершаются открытия, которые затем могут стать причиной спора о первенстве. Если смотреть еще шире, то, как правило, всегда можно найти кого-то другого, кто высказывал схожие идеи прежде или, по крайней мере, двигался в том же направлении. Аррениус в создании своей парниковой теории тоже опирался на достижения великих предшественников. Одним из них был французский математик Жан Баптист Жозеф Фурье (1768–1830). Но в конечном итоге современную теорию парникового эффекта разработал именно Аррениус, так что сегодня его первенство общепризнано. (Открытие и описание парникового эффекта Аррениусом отмечалось и обсуждалось в свете последних исследований в февральском номере журнала AMBIO за 1997 год).
В конце XIX века физики и химики активно обсуждали вопрос о том, какие факторы влияют на температуру в приземных слоях атмосферы. Этот вопрос возник в связи с новым научным знанием о ледниковом периоде, господствовавшем на Земле много тысяч лет назад, и с пониманием того, что приземная температура, по-видимому, неоднократно и существенно менялась на протяжении истории Земли. Аррениус, получивший впоследствии Нобелевскую премию по химии за другие свои достижения, утверждал, что приземная температура, а, следовательно, и температура воздуха достигает в точности того значения, при котором длинноволновое излучение Земли равно коротковолновому солнечному излучению. Если они не равны, то температура понижается или повышается до тех, пока не будет достигнут этот баланс. Согласно закону Стефана-Больцмана, длинноволновое излучение пропорционально 4-й степени температуры.
Если бы между источником энергии – Солнцем – и ее получателем – Землей – был вакуум, то средняя температура атмосферы Земли была бы равна – 10 °С. Фактически это, разумеется, не так, потому что между Солнцем и поверхностью Земли есть атмосфера, в которой, помимо облаков, содержится водяной пар и другие «парниковые газы». Эти газы, в частности, углекислый газ или метан, (тепловое) излучение и снова испускают его во все стороны, так что исходящая от земной поверхности энергия, которая в принципе должна была бы уйти непосредственно в Космос, частично улавливается и перенаправляется обратно в сторону Земли. Эти газы имеют подобное воздействие уже при очень низкой концентрации. Самый распространенный – наряду с водяным паром – парниковый газ СО2 составляет лишь 0,03% атмосферного воздуха.
Предположим, что только 40% излучения «проходит» в космос, а 60% энергии отражается и попадает обратно на Землю. Тогда на поверхность Земли попадет не только коротковолновое излучение, но и отраженное длинноволновое излучение. Если бы наша система изначально имела температуру – 10 °С, то она стала бы нагреваться, так как происходило бы накопление энергии. Но потепление приводит к тому, что длинноволновое излучение становится более высокоэнергетичным, при том что в Космос по-прежнему уходят лишь 40%. Однако коль скоро интенсивность излучения возрастает пропорционально 4-й степени температуры, от земли в чистом виде будет отражаться больше энергии, чем до потепления. В конце концов, процесс потепления прекращается, когда достигающее Космоса излучение уравновешивает излучение, достигающее поверхности Земли. Очевидно, что эта «конечная температура» намного выше, чем – 10 °С, из которых мы исходили. Однако из-за того, что атмосфера не только отражает длинноволновое излучение, но и защищает приземный слой от коротковолнового излучения, поверхности Земли достигает не все солнечное излучение, а лишь небольшая его часть. Эта защита зависит от альбедо (отражательной способности)1, на которое, в свою очередь, влияют облака, морские льды, снежные покровы, пустыни и землепользование. Благодаря этому эффекту в конечном итоге мы получает среднюю температуру атмосферы Земли около 15 °С, что вполне соответствует действительности2.
Это теория получила название «парниковой теории», что, однако, не совсем верно, так как температура в теплице нагревается по другим причинам, нежели температура наружного воздуха. В данной теории примечательно то, что она до сегодняшнего дня, т. е. на протяжении ста лет после первого опубликования, считается верной в том самом виде, в каком она была сформулирована изначально3. Сванте Аррениус показал, что изменения концентрации углекислого газа в атмосфере могли быть причиной наступления ледникового периода. Он был убежден в правильности найденного объяснения. И действительно, анализ ледяных кернов показал, что ледниковые периоды были связаны с существенными изменениями концентрации двуокиси углерода (ледяной керн «Восток»). Однако речь здесь не идет о прямой причинно-следственной связи, так как вполне возможно, что изменение концентрации углекислого газа было вызвано изменениями климатических условий. Высказывались и другие убедительные гипотезы, объясняющие периодичность ледниковых периодов. В этой связи следует упомянуть прежде всего циклы Миланковича – гипотезу, связывающую изменения климата с изменениями в земной орбите.
«Побочным продуктом» размышлений Аррениуса стала оценка того, как быстро будет увеличиваться температура воздуха, если человечество, сжигая ископаемое топливо, удвоит концентрацию диоксида углерода в атмосфере. Сванте Аррениус исходил из повышения температуры примерно на 3 °С, но при этом полагал, что увеличение концентрации СО2 вдвое может наступить не ранее, чем через 1000 лет, так как 85% углекислого газа сосредоточено в океане. Для общественно-политических дискуссий этот сценарий развития событий не имел большого значения1. Этот уровень в 85% и сегодня считается верным, но только для равновесного состояния. За нынешними, невероятно возросшими показателями выброса «океан уже не поспевает», так что в атмосфере сосредотачивается большое количество углекислого газа, и сценарий увеличения его концентрации в атмосфере вдвое в ближайшие 30–70 лет представляется вполне реалистичным (см. отчеты МГЭИК за 1990, 1992 под редакцией Хьютон и коллег). Мы еще рассмотрим вопрос изменения климата под влиянием человеческой деятельности в четвертой главе.
Итак, мы видим, что эти климатологические изыскания не ограничиваются подробными измерениями и обработкой их результатов с целью сформулировать ценные рекомендации для планирования человеческой деятельности в различных областях. Здесь мы имеем дело с дедуктивными выводами из фундаментальных законов физики, в данном случае из первого закона термодинамики – закона сохранения энергии. Климат оказывается в центре интеллектуальной любознательности, и значение наблюдений сводится к «верификации» гипотез, теорий и моделей. Тем не менее, подобные научные методики, относящиеся скорее к области фундаментальных исследований, привели к открытиям, взбудоражившим международную политику. Понятие «парниковый газ» стало общеупотребительным и уже не нуждается в объяснениях, когда речь о нем идет, например, в телевизионных новостях. Следует отметить, что в данном случае именно наука обнаруживает проблему и формулирует ее именно как проблему для обсуждения и решения в политике и обществе. Глобальное изменение климата, парниковый эффект и повышение температур не являются бытовой проблемой. Именно научные открытия и научные формулировки проблемы определяют в данном случае характер и масштаб политических мер. Подробнее об этом мы расскажем в четвертой главе.
Рис. 12. Описание ячеистых структур циркуляции атмосферы, сделанное Джорджем Хэдли в XVII веке в условиях неполной информации.
Ср. также с современной схемой на рисунке 14.
Другие значимые работы, в которых предпринимается попытка объяснить всеобщую атмосферную циркуляцию (например, факт существования областей пассатов), принадлежат перу английского ученого Джорджа Хэдли (1685–1768). Несмотря на то, что ему были доступны лишь очень немногочисленные эмпирические данные, Хэдли верно сформулировал основные положения теории общей циркуляции воздуха (рисунок 12), в частности, пассатов, не имея возможности вывести из своей теории другие важные аспекты данного явления.
Философ Иммануил Кант (1724–1804) также внес свой вклад в изучение этого явления. Проанализировав результаты наблюдений мореплавателей за изменениями ветра в Юго-Восточной Азии, он пришел к выводу, что дальше на юге должен находиться еще один континент – на тот момент еще не открытая Австралия.
Очередной прорыв в области физической климатологии связан с именами таких исследователей, как норвежец Вильгельм Бьёркнес (1862–1951), который внес большой вклад в объяснение внутренней структуры штормов в средних широтах, швед Карл Густав Россби (1898–1957), который выявил причины неустойчивости погоды в средних широтах, и, наконец, американец Джон Нойманн (1903–1957), который после второй мировой войны раньше других понял, какие возможности открывает электронная обработка данных перед метеорологией, и применил новые подходы на только появившихся в то время компьютерах. Это компьютерное моделирование с целью прогноза погоды легло в основу современных климатических моделей; важнейший вклад в развитие этой области внесли метеорологи и океанографы Сьюкуро Мэйнаби и Кирк Брайан из Геофизической лаборатории гидродинамики в Принстоне.
В современной климатологии климатическая система трактуется как взаимодействие или процесс взаимного влияния атмосферы, гидросферы, криосферы и биосферы и не ограничивается исключительно приземной атмосферой. На передний план выходят уже не описательные исследования, а прежде всего системно-аналитический подход. Краткое изложение современных подходов к климатической системе можно найти в работах Жуссом (Joussaume 1996), Филэндера (Philander 1998) и фон Шторха с соавторами (von Storch et al. 1999). Принцип действия здесь аналогичен принципу действия теплового двигателя, работающего благодаря разнице температур в камере сгорания и радиаторе. Применительно к атмосфере мы можем говорить о том, что «активным элементом» являются (тропические) камеры сгорания, тогда как в океанической системе поддержание (термической и галинной) циркуляции обеспечивается (субполярным) «радиатором».
Рис. 13. Норвежский метеоролог и создатель теории полярных фронтов Вильгельм Бьёркнес, портрет кисти Рольфа Гровена. Портрет выставлен на факультете геофизики Университета г. Бергена.
Рис. 14. Современная схема общей циркуляции атмосферы.
Источник: von Storch H., Güss S., Heimann M. Das Klimasystem und seine Modellierung. Eine Einführung. Springer Verlag, 1999. S. 255 и далее.
Современное понимание циркуляции атмосферы схематично представлено на рисунке 14.
Нагревание атмосферы происходит в первую очередь в тропиках за счет поступления солнечного тепла в виде коротковолнового излучения. Приземный воздух в тропиках сильно нагревается, вследствие чего стратификация атмосферы становится нестабильной. Воздух в низших слоях атмосферы становится легче воздуха более высоких слоев. Это приводит к интенсивному перемещению воздуха, усиливаемому наличием водяных испарений. Воздух, поднимающийся наверх, расширяется, остывает и уже не в состоянии удерживать пар в прежнем объеме. Часть паров конденсируется, и в результате снова высвобождается тепловая энергия, изначально задействованная в испарении воды. (В этом случае говорят также о «скрытой тепловой энергии», в отличие от «воспринимаемой тепловой энергии», связанной с температурой). Эта высвободившаяся энергия нагревает воздух, который опять становится легче своего окружения и, следовательно, продолжает движение вверх. Если вы летите на самолете в тропической зоне, вы можете наблюдать этот процесс по гигантским нагромождениям облаков, которые нередко скапливаются даже выше уровня полета, т. е. выше 11–13.000 метров.
У верхней границы тропосферы (за которой начинается стратосфера, где господствуют совершенно иные условия, поскольку происходящие там процессы определяются химическими реакциями и высвобождающейся в результате энергией), т. е. на высоте 10–14.000 метров, поднимающийся вверх воздух направляется к полюсам и постепенно опускается в субтропиках. Завершается цикл движением приземных потоков воздуха в направлении экватора – пассатами. При этом установившиеся режимы ветра не всегда направлены точно на север (в южном полушарии) или точно на юг. Вследствие вращения Земли (под влиянием силы Кориолиса) эти течения воздуха принимают северо-западное или юго-западное направление.
В средних широтах образуются вторичные фронты. И главные, и вторичные фронты переносят не только тепло, но и импульсы, вследствие чего у верхней границы тропосферы образуется мощный западный поток – так называемое струйное течение, которое становится неустойчивым. Вместо постоянного вертикального вихря формируются горизонтальные, крайне непостоянные вихри до нескольких тысяч километров в диаметре. Это и есть наши постоянные спутники – ураганы. Эти вихри переносят тепло в сторону полюсов как в скрытой, так и в ощутимой для человека форме. По ходу движения от Земли исходит длинноволновое излучение в космос. В начале пути коротковолновое излучение сильнее, чем длинноволновое, но по мере продвижения в сторону того или иного полюса коротковолновое излучение уменьшается, и в результате мы получаем отрицательный энергетический баланс. Система теряет больше энергии, чем получает. Этот разрыв компенсируется переносом энергии ветрами (или океаническими течениями). Таким образом, возникновение ветров обусловлено разностью между получаемой и выделяемой атмосферной энергией («чистая прибыль» в тропических широтах; «чистый расход» в полярных широтах). Подобно тому, как приводится в действие кривошипно-шатунный механизм в паровозе, так и здесь движение ветра возникает за счет термического равновесия между паровым котлом и радиатором.
В целом циркуляция в Южном полушарии аналогична циркуляции в Северном полушарии, однако вследствие нахождения в Северном полушарии больших континентальных массивов там наблюдается неравномерное потепление в направлении с запада на восток. Летом суша нагревается быстрее, чем океан, а зимой океан остывает медленнее. Это неравновесие проявляется в возникновении муссонов в тропических зонах, а также в устойчивых метеорологических различиях между восточной и западной частью Северного полушария. Кроме того, разделению климатической структуры на восточную и западную способствуют крупные горные массивы в Северном полушарии – Гималаи, Скалистые горы и горы Гренландии. Европейские горы, включая Альпы, имеют лишь региональное значение.
В Южном полушарии нет ярко выраженной асимметрии между востоком и западом. Здесь мы видим описанную выше структуру неустойчивых струйных течений с характерными для них штормами. Из-за того, что штормы в средних широтах Южного полушария (40°–50° юж. широты) случаются круглый год, это пространство получило название «ревущие сороковые». Если мы посмотрим на усредненное по времени распределение давления на земную поверхность, то мы увидим там только концентрические, параллельные плоскости географических параллелей изобары. Однако если посмотреть на ежедневную синоптическую карту, то можно увидеть, что на протяжении суток течение отнюдь не равномерное. В умеренных широтах над Южным (Антарктическим) океаном почти всегда имеют место от четырех до семи штормов. Поскольку шторма происходят во всей зоне умеренных широт, усреднив эти данные по времени, мы получаем равномерное распределение по Южному полушарию.
Океаническая циркуляция приводится в действие двумя механизмами: ветром над поверхностью океана и понижением температуры в субполярных широтах вследствие охлаждения морской воды и образования морских льдов. Циркуляция течений в верхнем океане возникает главным образом под влиянием ветра, который также является причиной (мерзлотного) вспучивания земной поверхности на побережье, в частности, на западном побережье Южной и Северной Америки, а также Гольфстрима и его «двойника» в северной части Тихого океана у японских островов – Куросио1.
Циркуляция «глубинных вод океана», т. е. океанических течений на глубине нескольких тысяч метров, имеет «термо-галинную» природу, т. е. вызвана разной плотностью на разных уровнях. По сути это те же процессы, что и в атмосфере, только вместо нагревания снизу (в тропиках) происходит охлаждение сверху (на поверхности субполярных океанов). Это охлаждение утяжеляет воду («термический эффект»). Тот же эффект имеет образование морского льда, поскольку в нем не содержится морской соли, которая остается в жидкой воде. В результате в жидкой воде повышается концентрация соли, и она становится более тяжелой («галинный эффект»). Когда поверхностные воды утяжеляются, вертикальная стратификация становится неустойчивой, и начинается конвекция. Поверхностные воды переносятся в глубину. В современных климатических условиях этот процесс происходит в северной Атлантике и в Южном океане у границ Антарктики. На глубине в этом случае происходят компенсаторные перемещения от областей понижения, и в других регионах, например, в Тихом океане, уровень воды поднимается.
Термо-галинная циркуляция происходит намного медленнее, чем циркуляция под воздействием ветров. Для состояния океанической поверхности она не имеет большого значения, однако она определяет состояние глубинных вод океана, а, следовательно, в долгосрочной перспективе, также климат на его поверхности. На самом деле нынешнее холодное состояние глубинных слоев океана (вблизи океанического дна температура воды приближается к точке замерзания) отнюдь не единственно возможное. Как в 1907 году доказал американец Томас Кальм Чемберлен (1843–1928), в ранние периоды истории Земли глубинные воды океана были теплыми1. Для того чтобы океанические воды прошли полный цикл глобальной термо-галинной циркуляции, им требуется от одной до двух тысяч лет. Вода, которая сейчас находится у дна Атлантического океана, начала свой путь с поверхности на глубину во времена викингов. Медленное погружение воды на глубину океана можно очень хорошо проследить по перемещению радиоактивного углерода (С14).
В климатических процессах океан – это не пассивный компонент, реагирующий на происходящее в атмосфере. Он сам тоже сильно влияет на атмосферу, определяя температуру в ее нижних слоях, а кроме того, являясь важнейшим источником водяных испарений. Вы только представьте: океан занимает 71% всей поверхности земли! Попадающий в атмосферу пар влияет на ее радиоактивность, а, следовательно, и на количество энергии, которую атмосфера получает от Солнца и которую она отражает в космос. Там, где водяные испарения конденсируются, т. е. превращаются обратно в воду, высвобождается термическая энергия. В этой связи применительно к пару говорят о скрытой энергии, так как сначала она никак не проявляется, а становится ощутимой только при переходе из газообразного состояния в жидкое. Конденсированный пар выпадает на землю в виде дождя или снега, проникает в почву и по рекам снова возвращается в море: круговорот замыкается.
Криосфера включает в себя ледниковые и снежные покровы Земли, которые в климатическом механизме выполняют две функции. Во-первых, они изолируют океан и поверхность земли от атмосферы, существенно ограничивая тепло- и влагообмен. Во-вторых, ледяные и снежные покровы имеют гораздо более высокий альбедо, чем другие поверхности – океан, пустыня или области с растительным покровом. Альбедо – это относительная доля отражаемого солнечного излучения. У свежевыпавшего снега альбедо достигает 95%, тогда как на морской поверхности этот показатель может не доходить до 10%.
Итак, атмосфера Земли – то, что в обыденной речи мы называем воздухом – не является изолированной физической системой, а состоит в разнообразных причинно-следственных связях с другими сферами Земли.
Как мы уже упоминали, динамика климата порождает отклонения в любых временных шкалах. Динамический механизм этого процесса отличается от других явлений. Если абстрагироваться от уже упомянутых внешних циклов суточного и годового хода, то окажется, что эта изменчивость в значительной степени обусловлена внутренними процессами. Ключевыми словами здесь являются «нелинейность», которая может мгновенно превратить ничтожно малое нарушение в большое последствие, и «бесконечное множество взаимосвязанных факторов». Первое явление известно как «эффект бабочки»: взмах крыльев бабочки можно кардинальным образом изменить ход развития системы. Второй эффект можно наглядно представить в виде существования несчетного множества бабочек, которые беспрерывно взмахивают крыльями, так что результат их действий невозможно отличить от случайного процесса. Динамика климатической системы трансформирует эту кажущуюся случайность в упорядоченную крупномасштабную структуру вариаций.
К обусловленным внешними причинами колебаниям в климатической системе относятся океанические и атмосферные приливы и отливы, а также колебания солнечного излучения, изменения оптических характеристик стратосферы вследствие извержения вулканов, изменения параметров земной орбиты, положение и топография континентов. Влияние приливов проявляется очень быстро, воздействие вулканов ограничивается одним-двумя годами. Масштаб воздействия солнечной активности пока до конца не изучен. Два других процесса охватывают период от нескольких тысяч до нескольких миллионов лет.
В завершение мы хотели бы указать на взаимосвязь глобального и регионального или локального климата1. В классической географической традиции знания о глобальном климате выводятся из знаний о совокупности региональных климатов. Однако с естественнонаучной точки зрения это отождествление неверно. Как мы видели, различные режимы излучения в высоких и низких широтах определяют общую структуру атмосферной (и океанической) циркуляции, включая тропические ячейки Хэдли, зоны западных ветров и штормовые зоны в средних широтах, где климатические процессы трансформируются под воздействием больших горных массивов и общего соотношения моря и суши. Чтобы показать, что в реальности значение имеют только действительно самые крупные структуры, заметим, что, например, исчезновение австралийского континента не привело бы к изменению глобального климата – по крайней мере, в математической модели, но, разумеется, повлияло бы на климат Австралии. Эта глобальная структура и есть «глобальный» климат, который практически не зависит от региональных данностей. Региональный климат, в свою очередь, можно трактовать как глобальный климат, видоизмененный под воздействием региональных условий, т. е. специфического типа земной поверхности (пустыня, тропический лес, степь), региональных горных массивов (Альпы), морей (Средиземное море) и крупных озер (Каспийское море). Локальные климаты формируются на основе регионального климата в результате адаптации к местным (локальным) особенностям, таким как крупные города, небольшие озера (Боденское озеро) или горы (Гарц). Правильность такой «каскадной трактовки» климата подтверждена успешностью климатических моделей (см. также: von Storch et al., 1999). Такие модели всегда «дискретизируют» процессы, располагая их на конечной координатной сетке, а не в виде континуума, как это имеет место в реальности. Это означает, что можно отобразить только те процессы, которые на пространственной (или временной) шкале по масштабу больше, чем заданное дискретизацией минимальное значение. Поэтому в таких моделях не отображены локальные климаты, из которых можно было бы вывести картину регионального климата, и региональные климаты, как правило, тоже не представлены в полном объеме. Но, несмотря на это, данные модели успешно описывают глобальный климат. Практика показывает, что в прежних моделях структуры, величина которых варьировалась в районе нескольких тысяч километров, были отображены правильно. Развитие компьютерных технологий сегодня позволяет снизить порядок моделируемых величин до нескольких сотен километров. Если бы классическое отождествление глобального климата с совокупностью региональных климатов было верным, то все попытки успешно симулировать глобальный климат при помощи климатических моделей были бы обречены на неудачу.