bannerbanner
ДНК. История генетической революции
ДНК. История генетической революции

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 5

Для всего мира будет лучше, если, вместо того чтобы ждать рождения нового дегенеративного потомства, способного только на преступления или на пожизненное нахлебничество из-за своего слабоумия, общество сможет предотвратить продолжение рода таких лиц… Трех поколений имбецилов достаточно.

Стерилизация вошла в практику и за пределами США, причем не только в нацистской Германии, как принято думать. Подобные законы были приняты и в Швейцарии, и в скандинавских странах.

Евгеника как научное направление, безусловно, не подразумевает расизма – ведь «качественные» гены, распространение которых стимулирует евгеника, могут быть у человека любой расы. Однако начиная с Гальтона, чей отчет об африканской экспедиции подкрепил предрассудки о «низших расах», знаменитые практикующие евгеники того времени стремились подвести «научное» обоснование под взгляды расистов. Генри Годдард, прославившийся своим «семейством Калликак», в 1913 году подверг тестированию IQ иммигрантов, прибывающих на остров Эллис, и обнаружил, что целых 80 % потенциальных новых американцев, по его определению, слабоумны. Тестирование IQ, которое проводили в армии США для новобранцев в годы Первой мировой войны, позволяло сделать схожие выводы: 45 % новобранцев, родившихся за рубежом, не дотягивали по умственному развитию до восьмилетнего возраста (а среди урожденных американцев эта цифра была еще ниже – всего 21 %). Предлагаемые тесты оказались необъективны – взять хотя бы то, что тексты были на английском языке, которым тестируемые не владели в совершенстве, – но в тот момент это не интересовало составителей; в данной ситуации расисты оказались на высоте положения, поставив евгенику себе на службу.

Термин «превосходство белых» еще не появился, но настроения Америки начала XX века, направленные против представителей других рас, особенностей поведения, этнических групп, достигли максимальной напряженности. WASP (белые, англосаксы, протестанты), составляющие всего 7 % населения США, оказались недовольны равноправием всех групп населения США. Англосаксонская социально-политическая элита того времени и Теодор Рузвельт всерьез были озабочены тем, что иммигранты с низким интеллектуальным уровнем развития негативно влияют на развитие Америки. В 1916 году Мэдисон Грант, богатый житель Нью-Йорка, друг Девенпорта и Рузвельта, опубликовал книгу «Конец великой расы», где утверждал, что нордические народы совершеннее всех остальных народов, в том числе и среди прочих европейцев. Чтобы сохранить «драгоценное нордическое наследие» Соединенных Штатов, Мэдисон Грант развернул кампанию за ограничение иммиграции в США любых представителей ненордических народов. Он являлся активистом расистской евгеники в описываемый нами период:

В сложившихся условиях наиболее практичным и многообещающим методом расовой оптимизации представляется устранение наименее желательных представителей нации путем лишения их возможности оставлять потомство. Селекционерам хорошо известно, что масть коровьего стада можно изменить, последовательно выбраковывая особей с нежелательной расцветкой, что, безусловно, подтверждается и на других примерах. Так, черных овец практически не осталось, потому что животные такой масти тщательно уничтожались из поколения в поколение.

Несмотря на формулировки, книга Мэдисона Гранта отнюдь не являлась бульварной публикацией сумасбродного маргинала – это был влиятельный бестселлер того времени. Впоследствии его перевели на немецкий и – что совершенно неудивительно – он приглянулся нацистам. Грант с восхищением вспоминал, как получил письмо от Гитлера, где тот называл книгу Гранта своей библией.

Вероятно, наиболее влиятельным представителем «научного» расизма той эпохи (пусть и не таким знаменитым, как Грант) был Гарри Лафлин, правая рука Девенпорта. Лафлин был сыном проповедника из штата Айова, свой «профессиональный» опыт в евгенике он приобрел, изучая родословные породистых лошадей и кур. Он контролировал научную работу станции экспериментальной эволюции в Колд-Спринг-Харборе, но наиболее проявил себя как эффективный лоббист идей евгеники. Во имя идей и принципов евгеники он фанатично пропагандировал стерилизацию и ограничения на въезд генетически неблагонадежных иностранцев (благонадежными, с его точки зрения, считались только выходцы из Северной Европы). Свою негативную историческую роль он сыграл, работая в Конгрессе экспертом-свидетелем на слушаниях об иммиграции. Там Лафлин дал волю своим ненаучным предрассудкам, естественно, выдавая их за «научные». Когда данные исследований не сходились или противоречили его идеям, Лафлин их подтасовывал. Стоило Лафлину обнаружить, что дети еврейских иммигрантов учатся в школах лучше, чем дети местных жителей, как он стал примешивать результаты евреев к представителям нации той страны, откуда они прибыли, и превосходная успеваемость евреев отлично затушевывалась. Когда в 1924 году в США был принят Закон об иммиграции Джонсона – Рида, серьезно ужесточивший правила иммиграции из Южной Европы и других регионов в США, Мэдисон Грант и ему подобные с энтузиазмом приветствовали это событие – это был звездный час Лафлина. Несколькими годами ранее Калвин Кулидж, будучи вице-президентом США, предпочел проигнорировать как коренных американцев, так и всю историю иммиграции в США, заявив однажды: «Америка – для американцев». Впоследствии уже на посту президента США он подписал собственное пожелание, что соблюдение расовых законов для нации столь же необходимо, как закон об иммиграции (Ethnic law is as great a necessity to a nation as immigration law).

Лафлин, как и Грант, пользовался популярностью в узких кругах нацистов, увидевших в теориях Лафлина и Гранта научную базу, на которую можно списать жестокость уже своих законодательных актов. В 1936 году Лафлин с энтузиазмом принял степень почетного доктора Гейдельбергского университета, где его характеристика звучала так: «дальновидный представитель Америки, воплощающий расовую политику». Однако вскоре у Лафлина была диагностирована эпилепсия, и его последние годы оказались очень тяжелыми, поскольку на протяжении всей карьеры он ратовал за стерилизацию эпилептиков, так как считал их генетическими дегенератами.


Научный расизм: данные о социальной неполноценности жителей США, полученные по результатам анализа в этнических группах (1922). Гарри Лафлин использовал термин «социальная неполноценность» как совокупное название для множества расстройств – от слабоумия до туберкулеза. Лафлин вычислил для каждой группы «квоту» на принудительное лечение, в зависимости от того, какой процент всего населения США приходится на эту группу. Процентный показатель, приведенный здесь, получен путем деления общего количества представителей конкретной группы, помещенных в лечебные учреждения, на квоту этой группы. Представители групп с показателем выше 100 % особенно многочисленны среди таких пациентов


Книга Гитлера «Моя борьба» (Mein Kampf), сочетающая элементы автобиографии с изложением идей национал-социализма, изобилует псевдонаучными расистскими бредовыми идеями, основанными на претензиях Германии на расовое превосходство, и сублиматом из самых отвратительных аспектов американского евгенического движения. Гитлер писал, что государство «должно объявить непригодными для размножения всех, кто имеет какие-либо видимые заболевания или унаследовал заболевание и, таким образом, может передать его по наследству, причем необходимо воплотить этот принцип на практике». Еще одна цитата из книги Гитлера: «те, кто нездоровы физически и умственно и не представляют ценности, не должны передавать детям свои телесные страдания». Вскоре после прихода к власти в 1933 году нацисты приняли закон о принудительной стерилизации – «закон о предотвращении размножения лиц с наследственными дефектами», – бесспорно, основанный на американской модели Лафлина. Последствием принятия этого закона стала стерилизация 225 тысяч человек.

«Положительная» евгеника, стимулировавшая деторождение в среде «правильных» людей, особо процветала в нацистской Германии, причем «правильными» считались только «истинные арийцы». Генрих Гиммлер, лидер СС (элитных нацистских войск), видел свою миссию именно в евгеническом ключе: офицеры СС должны были гарантировать немцам достойное генетическое будущее, заводя как можно больше детей от женщин арийской крови. В 1936 году он организовал специальные родильные дома для жен эсэсовцев, чтобы гарантировать этим женщинам максимально качественный уход в период беременности. На съезде идеологов фашизма, состоявшемся в Нюрнберге в 1935 году, был провозглашен «закон о защите германской крови и германской чести», запрещавший браки между немцами и евреями и даже «внебрачные сексуальные связи между евреями и гражданами Германии, а также представителями родственных кровей». Нацисты с особой щепетильностью подходили к устранению любых браков между немцами и представителями других национальностей.

Особо прискорбно, что такой же жестокостью взглядов на вопросы семьи отличался и закон Джонсона – Рида, над разработкой которого усердно трудился Гарри Лафлин. Для многих евреев, спасавшихся от нацистских репрессий, США были первым и наиболее логичным направлением эмиграции, но ограничительно-расистская иммиграционная политика США вынудила многих отказаться от иммиграции в США. Мало того что закон о стерилизации послужил Гитлеру образчиком для его бесчеловечной программы; вмешательство Лафлина в иммиграционное законодательство означало, что США фактически отдают немецких евреев на растерзание нацистам.

В 1939 году, когда уже шла Вторая мировая война, нацисты стали практиковать эвтаназию. Стерилизация оказалась слишком обременительной. По мнению нацистов, кормить стерилизованных людей оказалось крайне обременительно, пациентов психиатрических больниц также стали считать «дармоедами». В психиатрических отделениях начали распространять опросники, для заполнения которых собирались целые консилиумы врачей, от которых требовалось помечать крестиком тех пациентов, которых они считали «недостойными жить». Такие отметки достались 75 тысячам человек, поэтому была оперативно разработана технология массового уничтожения в газовых камерах. Впоследствии нацисты расширили категорию «недостойных жить», включив в нее целые этнические группы, например цыган, евреев. Холокост стал кульминацией нацистской евгеники.

В конечном итоге евгеника обернулась для человечества настоящей трагедией. Она катастрофически повлияла на нарождающуюся генетику – эта наука тоже оказалась запятнана. На самом деле, несмотря на авторитетность многих представителей евгеники, в частности Девенпорта, известные ученые критиковали это движение и отмежевывались от него. Альфред Рассел Уоллес, соавтор дарвиновской теории естественного отбора, в 1912 году клеймил евгенику как «обычное беспардонное вмешательство самодовольных фарисеев от науки». Томас Хант Морган, прославившийся исследованием плодовых мушек, «по научным соображениям» отказался от места в совете директоров бюро экспериментальной эволюции и евгеники в Колд-Спринг-Харборе. Раймонд Пирл из Университета Джона Хопкинса писал в 1928 году, что «сторонники ортодоксальной евгеники прямо противоречат фактам, максимально достоверным с точки зрения генетики».

Необходимо понимать, что евгеника утратила авторитет в научном сообществе задолго до того, как нацисты адаптировали ее для своих жутких целей. Ее «научная основа» была фальшивой, а социальные программы, имевшие евгеническое обоснование, – крайне предосудительными с общественной точки зрения. «Связь» евгеники и генетики не прошла незамеченной, к середине XX века научная генетика, в частности генетика человека, столкнулась с серьезным общественным неприятием. Когда в 1948 году я впервые прибыл в Колд-Спринг-Харбор, где ранее располагалось уже упраздненное к тому моменту бюро экспериментальной эволюции и евгеники, никто даже упоминать не решался «слово на букву Е» и не желал обсуждать прошлое собственной науки, хотя старые выпуски немецкого «Журнала о расовой гигиене» по-прежнему пылились на библиотечных полках этой лаборатории.

Понимая научную недостижимость и необоснованность евгеники, генетики надолго забросили масштабный поиск таких наследственных закономерностей, которые позволили бы описать поведенческие характеристики человека, будь то «слабоумие» по Девенпорту или «гениальность» по Гальтону, и сосредоточились на локализации генов и выяснении, как тот или иной ген функционирует в клетке. Когда в 1930-е и 1940-е годы появились новые, более эффективные методы изучения биохимических молекул в мельчайших деталях, наконец настало время подступиться к величайшей из биологических загадок: какова химическая природа гена?


Глава 2

Двойная спираль: это жизнь

Я увлекся генетикой, когда учился на третьем курсе в Университете Чикаго. До этого собирался быть натуралистом и планировал, что моя научная карьера пройдет вдали от каменных джунглей Южного Чикаго, где я вырос. Пересмотреть собственные увлечения меня заставила не личность авторитетного педагога, а маленькая книжка, вышедшая в 1944 году. Она называлась «Что такое жизнь?», и написал ее австриец Эрвин Шрёдингер, основатель волновой механики. В основе книги лежали несколько лекций, которые Шрёдингер годом ранее прочитал в Дублинском институте перспективных исследований. Меня заинтриговало, что великий физик нашел время написать книгу по биологии. В те годы я, как и большинство современников, считал химию и физику «настоящими» науками, а физики-теоретики казались мне научными патрициями.

Эрвин Шрёдингер писал, что жизнь можно трактовать как систему хранения и передачи биологической информации. Соответственно, хромосомы считались просто носителями такой информации. Поскольку в каждой клетке приходится укладывать множество информации, она должна архивироваться в виде так называемого шифрованного наследственного кода, внедренного в молекулярную структуру хромосом. Таким образом, чтобы понять жизнь, нужно выделить эти молекулы и взломать их код. Шрёдингер даже полагал, что путь к постижению жизни лежит через поиски гена, это особый путь, который может вывести нас за пределы законов физики в том виде, в каком мы их понимаем. Книга Шрёдингера оказала на нас большое влияние. Многие из тех, кто затем сыграл роли в первом акте великой драмы под названием «молекулярная биология» (в том числе Френсис Крик, сам когда-то изучавший физику), прочли книгу «Что такое жизнь?» и были ею впечатлены.

Книга Эрвина Шрёдингера вызвала у меня самый живой интерес, поскольку я также был заинтригован сущностью жизни. В то время все еще оставались ученые, хотя и в меньшинстве, полагающие, что основа жизни – это жизненная сила, эманация Всемогущего Бога. Но, как и большинство моих учителей, я презирал идею витализма как таковую. Если именно эта «жизненная» сила была движущим механизмом в игре природы, то вряд ли стоило надеяться познать и саму жизнь научным методом. В то же время мне крайне импонировала идея, что жизнь может передаваться как некий секретный код, записанный в виде свода инструкций. Как молекулярный код может быть столь филигранным, чтобы передавать все чудесное многообразие живого мира? И какая молекулярная уловка позволила бы при каждом удвоении хромосом обеспечить точное копирование этого кода?

В тот момент, когда Шрёдингер выступал в Дублине со своими лекциями, большинство биологов полагало, что основными переносчиками генетической информации в конце концов окажутся белки. Белки – это молекулярные цепочки, слагаемые из 20 различных строительных блоков, именуемых аминокислотами. Поскольку варианты перестановки аминокислот в такой цепочке практически бесконечны, белки, в принципе, вполне могли кодировать информацию, обеспечивающую индивидуальность и биоразнообразие. На тот момент ДНК не рассматривалась всерьез как носитель «генетического кода», пусть даже этот код локализовался исключительно в хромосомах (о чем было известно уже около 75 лет). В 1869 году Фридрих Мишер, швейцарский биохимик, работавший в Германии, смог выделить из пропитанных гноем бинтов, добытых в ближайшей хирургической больнице, особое вещество, которое он назвал «нуклеин». Поскольку гной состоит преимущественно из лейкоцитов, в которых (в отличие от эритроцитов) есть ядра и, соответственно, хромосомы, содержащие ДНК, Фридрих Мишер наткнулся на хороший источник ДНК. Открыв впоследствии, что «нуклеин» встречается исключительно в хромосомах, Мишер понял, что совершил по-настоящему крупное открытие. В 1893 году он писал: «Наследственность обеспечивает непрерывную передачу форм от поколения к поколению, и этот механизм работает даже глубже, чем на уровне химических молекул. Он заключен в структурировании атомных групп. В данном случае я также являюсь приверженцем химической теории наследования».


Физик Эрвин Шрёдингер, чья книга «Что такое жизнь?» подвигла меня заняться исследованием генов


Но даже спустя целые десятилетия возможностей химии еще не хватало для анализа колоссальной и невероятно сложной молекулы ДНК. Только в 1930-е годы выяснилось, что ДНК – это длинная по размерам молекула, в которой содержится четыре разновидности химических оснований: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Однако на момент дублинских выступлений Шрёдингера по-прежнему было неясно, как устроены химические связи между этими белковыми субъединицами молекулы (так называемыми дезоксинуклеотидами). Также оставалось загадкой, могут ли различаться последовательности четырех оснований в разных молекулах ДНК. Если в ДНК действительно скрывался шрёдингеровский «генетический код», то эта молекула должна была бы существовать в бесчисленно разнообразных формах. Но на тот момент еще продолжала обсуждаться версия о том, что последовательность нуклеотидов вроде А-Г-Т-Ц может повторяться по всей длине ДНК.

ДНК оказалась в центре внимания генетиков лишь в 1944 году, когда из лаборатории Освальда Эвери в Рокфеллеровском институте (Нью-Йорк) пришла новость, что можно менять состав оболочки бактерии пневмококка. Такой результат оказался сюрпризом для Освальда Эвери и его молодых коллег: Колина Маклеода и Маклина Маккарти.

На протяжении более чем десяти лет группа Эвери отслеживала еще одно необычнейшее явление, впервые наблюдать которое удалось в 1928 году Фреду Гриффиту, ученому из британского Министерства здравоохранения. Гриффит интересовался пневмонией и изучал ее возбудителя – пневмококк. К тому моменту было известно, что существуют разные штаммы пневмококка, именуемые «гладкими» (S) и «шероховатыми» (R) – названия дали по внешнему виду колоний стрептококков на питательных средах, видимых под микроскопом. Штаммы микроорганизмов различались не только визуально, но и по признаку вирулентности. Оказалось, что если ввести мыши бактерию S-типа, то через несколько дней мышь гибнет, но после инъекции бактерии R-типа остается здоровой. Выяснилось, что клетки S-бактерий имеют оболочку, не позволяющую факторам иммунной защиты мыши распознать микробное «вторжение». У R-клеток такой оболочки нет, поэтому иммунные клетки мыши с ними легко справляются и уничтожают.

Поскольку Гриффит работал в сфере здравоохранения, он знал, что у конкретного пациента иногда можно найти разные штаммы, поэтому заинтересовался, как эти штаммы могут взаимодействовать друг с другом в организме несчастной лабораторной мыши. Одна из комбинаций микроорганизмов натолкнула его на интересное открытие: если в организм мыши вводили S-бактерии, убитые нагреванием (непатогенные), и обычные R-бактерии (также непатогенные), мышь погибала. Как две непатогенные бактерии могли так «сговориться», чтобы погубить мышь? Ситуация прояснилась, когда ученый выделил бактерии пневмококка из организма погибших мышей и обнаружил живые S-бактерии. Казалось, что живые (непатогенные) R-бактерии что-то позаимствовали у мертвых S-собратьев; что бы это ни было, именно этот ресурс позволял R-бактериям в присутствии убитых нагреванием S-бактерий трансформироваться в живой смертоносный S-штамм. Гриффит доказал, что такие изменения действительно происходят, выведя культуру S-бактерий из нескольких поколений мертвых мышей; бактерия размножалась именно по S-типу точно так же, как размножался бы обычный S-штамм стрептококка, то есть у R-бактерий, введенных мышам, происходили генетические изменения.


Так выглядят под микроскопом кровяные тельца, обработанные специальным веществом для окрашивания ДНК. Задача эритроцитов – переносить кислород; потому, чтобы этот процесс был максимально эффективен, красные кровяные тельца не имеют ядра, а значит, и ДНК. Однако в лейкоцитах, двигающихся в крови в поисках «незваных гостей», есть ядро и хромосомы


Хотя такая трансформация противоречила всем устоявшимся на тот момент взглядам, наблюдения Гриффита поначалу почти не заинтересовали научный мир. Отчасти дело было в том, что Гриффит вел крайне уединенный образ жизни и так сторонился больших собраний, что редко бывал на научных конференциях. Однажды его практически заставили прочитать лекцию. Гриффита усадили в такси и, словно под конвоем, доставили в аудиторию к коллегам. Там он монотонно отбарабанил текст, посвященный какому-то унылому аспекту своих микробиологических исследований, но ни словом не обмолвился о превращениях бактерий. К счастью, прорывное открытие Гриффита не прошло незамеченным.

Освальда Эвери также заинтересовали полисахаридные капсулы пневмококков. Он попытался повторить эксперимент Гриффита, чтобы выделить и охарактеризовать фактор, из-за которого R-клетки «трансформировались» в S-клетки. В 1944 году Эвери, Маклеод и Маккарти опубликовали результаты своей работы. В ходе тщательно спланированного дизайна исследования удалось однозначно продемонстрировать, что в основе бактериальных превращений лежит трансформация ДНК. При выращивании бактерий in vitro, а не в организме живых мышей оказалось гораздо проще идентифицировать химический состав фактора, преобразующего S-клетки, убитые нагреванием. Методично уничтожая один за другим различные химические компоненты S-клеток, убитых нагреванием, Освальд Эвери с коллегами пытались выяснить, блокируется ли трансформация при отсутствии того или иного компонента. Сначала они избавились от полисахаридной капсулы стрептококка S-бактерии. Трансформация не прекращалась, и, следовательно, дело было не в капсуле. Далее они применили смесь двух протеолитических ферментов – трипсина и химотрипсина, разложив с их помощью практически все белки, присутствовавшие в S-клетках. К их удивлению, и это не повлияло на трансформацию. Тогда они взялись за фермент РНКазу, разлагающую РНК (рибонуклеиновую кислоту). Это второй класс нуклеиновых кислот, похожих на ДНК, которые участвуют в синтезе белков. Трансформация опять происходила. Наконец они добрались до ДНК, обработав вытяжки S-бактерий ферментом, разрушающим ДНК. Здесь они «попали в яблочко». Оказалось, что ДНК и есть тот самый преобразующий фактор.

Итоговая статья Эвери, Маклеода и Маккарти, опубликованная в феврале 1944 года, имела все шансы произвести в науке эффект разорвавшейся бомбы и, как любое революционное открытие, вызвала смешанные отклики коллег. Большинство генетиков согласились с выводами Эвери, Маклеода и Маккарти. В конце концов, ДНК находится в каждой хромосоме – почему бы ей не быть носителем генетичекой информации? Большинство биохимиков, напротив, сомневались, что молекула ДНК обладает достаточной сложностью, чтобы в ней могли храниться такие колоссальные объемы биологической информации. Они по-прежнему полагали, что наследственность должна реализовываться через белки, также входящие в состав хромосом. В принципе, как верно отмечали биохимики, обширный корпус сложной информации было бы гораздо проще зашифровать, воспользовавшись «алфавитом» из двадцати аминокислот (входящих в состав белков), нежели четырехбуквенным «алфавитом» нуклеотидов, из которых состоит ДНК. Особенно едко высказывался против генетической природы ДНК коллега Эвери, работавший в том же самом Рокфеллеровском институте, – биохимик, специалист по белкам Альфред Мирски. Правда, к тому времени Эвери уже не занимался наукой. Рокфеллеровский институт вынудил его выйти на пенсию в возрасте 65 лет.

Увы, Освальд Эвери упустил не только возможность защищать свои разработки от нападок коллег; более того, он так и не удостоился Нобелевской премии, которую определенно заслужил за открытие возможностей ДНК. Поскольку Нобелевский комитет публикует свои протоколы спустя 50 лет после награждения, сегодня известно, что кандидатуру Эвери заблокировал шведский специалист по физической химии Эйнар Хаммарстен. Хотя Хаммарстен приобрел солидную репутацию в основном за то, что умел готовить беспрецедентно чистые препараты ДНК, он все равно был убежден, что гены – это белки, относящиеся к какому-то еще не известному ученым классу. Даже после открытия двойной спирали Хаммарстен упорствовал в отношении того, что Эвери не заслуживает Нобелевской премии, и продолжал настаивать на своем до тех пор, пока механизм трансформации ДНК не был детально описан. Освальд Эвери умер в 1955 году – проживи он еще несколько лет, и он определенно стал бы лауреатом Нобелевской премии.

На страницу:
4 из 5