Полная версия
Тайная сила обоняния. Доверься носу. Иди за инстинктами
Воздействие озона
Озон обладает сильным окислительным действием, то есть он запускает химические реакции в других молекулах. В ходе эксперимента в моей лаборатории табачные бражники летели к определенному цветку в аэродинамической трубе. Сначала мы смоделировали условия, существующие сегодня в природе. Бражники быстро нашли цветок, опылили его и забрали нектар. Затем мы подвергли цветок воздействию озона в повышенной концентрации и снова наблюдали за поведением бабочек. Теперь насекомые явно потеряли ориентацию и уже не могли найти цветы. Когда мы проанализировали, какие молекулы выделяются из бутонов, оказалось, что вместо некоторых из них возникло другое вещество с совершенно другим запахом.
При таких концентрациях озона, которые возникают в теплые дни в ряде регионов мира, эффективность опыления растений насекомыми заметно снижалась. В ходе наших экспериментов мы исследовали, может ли воздействие озона уменьшить умение насекомых приспосабливаться. Именно это мы и обнаружили.
Если бы мы предложили мотыльку «новый» цветочный запах вместе с мощными визуальными сигналами, однократного восприятия нового запаха вместе с наличием нектара было бы достаточно, чтобы бабочка в будущем летела к богатому озоном запаху и воспринимала его как сигнал присутствия пищи{11}. Как сказал Ян Малкольм в «Парке юрского периода»: «Жизнь всегда находит выход».
Однако в большинстве случаев выяснялось, что высокий уровень озона оказывает пагубное влияние на эффективность опыления пчелами, шмелями, мотыльками и другими насекомыми. То же самое относится и к другим газам – например, к выхлопным газам дизельных двигателей{12}. Очевидно, что мы должны сделать все возможное, чтобы ограничить выбросы таких газов и максимально сократить их количество.
В другом исследовании моя коллега Джеральдин Райт изучала воздействие современных пестицидов на пчел-опылителей. Неоникотиноиды, в настоящее время наиболее широко используемые в мире инсектициды, менее вредны для птиц и млекопитающих, чем старые карбаматы и фосфорорганические соединения. Считалось, что меньшие количества менее вредны для полезных пчел. Однако, когда Джеральдин изучала обонятельные способности у медоносных пчел, подвергшихся воздействию неоникотиноидов в очень низких концентрациях, было обнаружено, что они серьезно нарушены{13}. И в этом случае обонятельная коммуникация и навыки, лежащие в ее основе, пострадали от действий людей.
Роль температурных колебаний
Температура также влияет на жизнь насекомых. При более высоких температурах все молекулы запаха испаряются намного быстрее и все пахнет сильнее. Поскольку у насекомых отсутствует терморегуляция – им не хватает способности поддерживать стабильную температуру тела, – их физиологические функции обычно точно настроены на температуру их среды обитания. Обоняние не является исключением. Жук, живущий в пустыне, может лучше всего ощущать запахи при 40 ℃. Тогда как мои измерения обонятельных нейронов в усиках зимней моли показывают, что оптимальная температура для этих бабочек составляет около 10 ℃ и система практически не функционирует при 20 ℃. Таким образом, постоянное повышение температуры, вызванное изменением климата, напрямую влияет на обоняние насекомых и, предположительно, многих других нетеплокровных животных.
Кроме того, повышение температуры позволяет насекомым продвигаться в новые регионы. Хотя их распространение не имеет прямого отношения к восприятию запахов, очевидно, что несколько общеизвестных видов насекомых, ориентирующихся на запахи, стремительно развиваются. В главе 9 речь пойдет о малярийном комаре. Это всего лишь один из многих видов, распространяющих болезни по всему миру. В настоящее время мы наблюдаем, как он перемещается на новые территории – в Европу и Северную Америку. Распространение вируса Зика из Южной и Центральной Америки на юг США также произошло благодаря комарам рода Aedes. Другие болезни, такие как лихорадка Западного Нила и лихорадка Чикунгунья, также распространяются по мере проникновения комаров-переносчиков в новые регионы{14}.
В главе 10 мы рассмотрим обоняние жука-короеда. Всего десять лет назад эти жуки каждый год производили одно поколение потомства, то есть каждая самка оставляла шестьдесят новых жуков. Сегодня в Центральной Европе мы имеем дело с тремя поколениями в год, то есть на одну самку приходится три тысячи потомков, которые впадают в спячку, уничтожив большое количество елей.
Исследования насекомых продолжаются
Если мы хотим знать, что именно, когда, как и где происходит, нам, безусловно, нужны дополнительные исследования. Решив лучше понять, как антропоцен влияет на обоняние насекомых, я основал Центр химической экологии насекомых нового поколения Общества Макса Планка (NGICE), где объединил для исследований в этой области специалистов из трех учреждений: из моего отдела эволюционной нейроэтологии в Институте химической экологии Общества Макса Планка в Германии, Шведского университета сельскохозяйственных наук и группы, исследующей феромоны на кафедре биологии университета Лунда (также в Швеции).
Наша общая цель – изучить влияние изменения климата, парниковых газов и загрязнения воздуха на химическую коммуникацию между насекомыми. Таким образом мы хотим внести свой вклад в решение глобальных проблем, связанных с климатическим кризисом, голодом и болезнями{15}.
Запах пластика
В 1907 году в Нью-Йорке бельгийский химик Лео Бакеланд изобрел бакелит – первый пластик, изготовленный из синтетических компонентов. С тех пор производство пластмасс приняло огромные масштабы. Сегодня мировое производство пластика оценивается в 360 миллионов тонн в год. Но почему это имеет значение для обонятельного восприятия?
Как подробно рассказывается в главе 4, птицы используют обоняние для разных целей. Для морских птиц способность чувствовать запах диметилсульфида (ДМС) – важная часть их обонятельной функции. Это соединение высвобождается из измельченного фитопланктона, часто при потреблении зоопланктоном. Так что для птиц сернистый газ – верный признак того, что поблизости много еды.
К сожалению, то, что животные воспринимают ДМС как сигнал о наличии корма, в век пластика создает проблему. Когда пластик плавает в воде в течение нескольких месяцев, он также выделяет ДМС, тем самым обманывая морских обитателей и заставляя их поверить, что он съедобен{16}. По данным Программы ООН по окружающей среде (ЮНЕП), мы ежегодно выбрасываем восемь миллионов тонн пластика в мировой океан{17}, и это, по примерным оценкам, более пяти триллионов крупных и мелких пластиковых частиц, и количество только увеличивается… Птицы по ошибке едят пластик, который забивает их пищеварительный тракт и в конечном итоге убивает их. Каждый год умирает около миллиона морских птиц, потому что их желудки полны наших пластиковых отходов.
Способность находить пищу в океане с помощью ДМС развилась не только у птиц. Тюлени и киты (см. главу 5), вероятно, используют ту же стратегию, подвергая себя таким же опасностям. При исследовании детенышей черепах у ста процентов этих крошечных существ уже был пластик в желудках{18}. Таковы серьезные экологические последствия массового производства одноразовых пластиковых предметов.
В Большом тихоокеанском мусорном пятне (одной из пяти свалок, обнаруженных в наших океанах) течения и ветра сгоняют выброшенный мусор (включая пластмассу и рыболовные снасти) на площадь примерно в два раза больше Техаса, или в три раза больше Франции, если сравнивать в масштабах Европы{19}. Поверхность воды в основном покрыта микропластиком. Согласно исследованиям, таких частиц уже может быть больше, чем зоопланктона, и они определенно нашли свой путь в Марианскую впадину, самую глубокую точку мирового океана{20}. Нетрудно представить, какую роль играет эта негативная тенденция в жизни птиц и других морских существ, которых привлекает запах.
Изменение обоняния
Помимо запаха диметилсульфида в воздухе, воздействующего на птиц и других животных, существует также антропогенное химическое загрязнение, распространяющееся по водным путям, океанам, озерам и рекам. Рыбы, ракообразные и другие обитатели водной стихии плавают в бульоне из искусственных молекул. Некоторые из этих молекул наносят ущерб животным и их экологическим системам.
Подобно нашим обонятельным нейронам, нейроны рыб подвержены прямому воздействию окружающей воды и всех растворенных в ней веществ. В том числе меди. Согласно исследованиям, высокая концентрация меди пагубно влияет напрямую на функцию обонятельных нейронов рыб, морских и речных ракообразных. При продолжительном воздействии нарушается нормальное поведение при спаривании и поиске пищи, обусловленное запахом{21}.
Чтобы защитить наши посевы, мы распыляем разнообразные пестициды, которые рано или поздно попадут в водоемы. Большинство владельцев садов для борьбы с сорняками используют гербициды, содержащие глифосат. В экспериментах это соединение препятствовало поиску корма рыбами даже в тех концентрациях, которые встречаются в природе, а функция обоняния у кижуча была нарушена{22}. Многие другие химические вещества также оказывают прямое влияние на поведение рыб. Поскольку некоторые виды лосося чрезвычайно важны с экономической точки зрения, было проведено множество исследований того, как пестициды влияют на это семейство рыб. Как выяснилось, большое количество промышленных химикатов, которые мы используем в сельском и лесном хозяйстве, влияет на сексуальное поведение рыб и на поиск ими корма (см. главу 5). Интересно, что циперметрин, который используется для защиты лосося от лососевых вшей в рыбоводной промышленности, также оказывал влияние на его поведение.
Другой пример – 4-нонилфенол, который широко используется в качестве смачивающего агента как в промышленности, так и на очистных сооружениях. Это соединение в настоящее время можно обнаружить почти в каждом водоеме по всему миру. Когда ученые подвергли социальные виды рыб воздействию 4-нонилфенола в концентрациях, встречающихся в природе, эксперимент имел серьезные последствия. Рыба больше не реагировала на феромоны, которые обычно вызывают образование косяков, и вместо этого демонстрировала противоположное поведение. По-видимому, загрязнение этим веществом напрямую влияет на поведение, касающееся как избегания хищников, так и поиска пищи{23}.
При изучении количества производимых нами химикатов и их влияния на природное химическое разнообразие становится ясно: рыбы и другие водные обитатели сильно страдают от них. В частности, из-за негативного воздействия на обоняние: иногда токсины окружающей среды напрямую нарушают обонятельную способность или оказывают косвенное влияние на поведение и на функции гормонов.
Человеческое обоняние
Вернемся в 1021 год и подумаем о собственном запахе. Как подробно рассказывается в главе 2, одна из крупнейших мировых индустрий процветает благодаря нашей вере в то, что от природы мы плохо пахнем. Духи и парфюмеры существовали в Индии, Египте и Месопотамии тысячи лет назад, но только в XVIII веке они стали популярны в Европе благодаря королю Франции Людовику XV и мадам де Помпадур. Эти двое стали законодателями парфюмерной моды, которой все хотели следовать. Но раньше, в 1021 году, большинство людей источали свой естественный запах.
Еще одна привычка, которая оказала большое влияние на запах нашего тела, – частое мытье и душ. Эти очистительные ритуалы также стали популярными в XVIII веке, когда вода впервые начала считаться полезной для здоровья даже в городах. Купание и использование мыла изменили микрофлору нашего тела, а вместе с ней и запах.
Вот почему в антропоцене мы пахнем меньше и иначе, чем люди в другие эпохи. Регулярно моясь, мы уменьшаем запах своего тела, а используя посторонние, сильно пахнущие вещества, кардинально его меняем. Дезодорирующие вещества, часто используемые в таких средствах, убивают микроорганизмы на нашей коже и таким образом серьезнее меняют наш запах.
Такое изменение, вероятно, означает и то, что мы можем получать меньше знаний о наших собратьях. В главе 2 и других частях этой книги на примере других видов рассказывается, что в запахах, которые мы испускаем, скрыто много информации. Значительная ее часть теряется в наших попытках замаскировать свое настоящее обонятельное «я».
Наше обоняние и антропоцен
Поскольку мы постоянно пытаемся скрыть свой запах, то рискуем потерять способность чувствовать запахи. Современный мир частично виноват в этой обонятельной дисфункции. Общепризнано, что плохое качество воздуха может привести к серьезным респираторным и сердечным заболеваниям, а вот нарушения обоняния, связанные с загрязнением воздуха, стали изучать лишь недавно{24}.
Кроме того, может существовать связь между загрязнением воздуха и риском психических расстройств или неврологических заболеваний, таких как болезнь Паркинсона или Альцгеймера. Плохое качество воздуха не является явной причиной таких неврологических расстройств, но исследования показывают, что риск возрастает, когда люди живут или работают в сильно загрязненных районах, особенно если в воздухе присутствуют частицы сажи{25}.
А как эти болезни связаны с обонянием? Аносмия (острая потеря обоняния) – часто один из первых признаков болезни Паркинсона и болезни Альцгеймера. Также аносмия нередко связана с депрессией и биполярным расстройством (см. главу 2).
В этой области, безусловно, необходимы дальнейшие исследования. Но вполне вероятно, что существует связь между обонятельными нервами и потоком спинномозговой жидкости, которая работает как «подушка» вокруг нашего головного и спинного мозга, а также помогает выводить продукты жизнедеятельности из клеток головного мозга. По некоторым данным, спинномозговая жидкость покидает наш организм не только через лимфатическую систему, но и через носовую полость. Если наши обонятельные нервы или связанные с ними нервные пути повреждены – например, вследствие загрязнения воздуха, – это может вызвать и неврологические расстройства из-за эффекта домино. Однако научные выводы в этой области не окончательны и дальнейшая исследовательская работа еще продолжается.
Болезни и запах
Люди приручили животных несколько тысяч лет назад. Вероятно, первыми спутниками человека были собаки, за ними последовали свиньи, коровы, лошади и другие. В 1021 году многие люди делили кров не только с родственниками, но и с домашними животными. Соответственно, у них с животными были общие микроорганизмы, и это послужило причиной возникновения многих болезней.
По мере того как люди размножались и популяция увеличивалась, мы создавали оптимальную среду для распространения таких болезней, и некоторые из них напрямую влияли на обоняние. Последний пример – пандемия COVID-19. При этом, согласно актуальным данным, вирус распространился через китайские рынки, где люди имеют непосредственный контакт с живыми дикими животными и торгуют ими в очень стесненных условиях. Здесь у вируса были обширные возможности заразить множество снующих людей – а затем начать циркулировать по всему миру.
Среди симптомов, с которыми сталкивались большинство пациентов с COVID-19, – полная потеря обоняния и вкуса. Однако до сих пор до конца неясно, действительно ли исчезает именно вкус, потому что то, что большинство считает вкусом, в действительности является запахом в носу и горле. В любом случае исследования потери обоняния при COVID-19 сосредоточены как на периферии – носе, так и на центральном уровне, то есть на мозге. На сегодняшний день некоторые результаты указывают на то, что могут быть затронуты специфические поддерживающие клетки вокруг обонятельных нейронов в носу. Углубленное исследование также изучает влияние COVID-19 на обонятельную луковицу больных{26}.
Через несколько лет мы, вероятно, будем точно знать, какой механизм использует этот вирус для отключения обоняния у пострадавших. Какова бы ни была причина, ясно одно: привычка к сосуществованию людей и животных стала причиной передачи вредных микроорганизмов от одного вида к другому. Мы должны учитывать это в наших отношениях с животными. Это касается и диких животных, и домашних. Чем плотнее они обитают, тем легче распространяются болезни. Совсем другой вопрос – частое применение антибиотиков, с помощью которых в промышленном животноводстве достигается высокая плотность поголовья. Но исследование этой проблемы – тема для другой книги.
Глава 2
Человеческое обоняние и запахи
Человеческие запахи имеют много функций. Мы их ощущаем и издаем. Они притягивают и отталкивают, вызывают отвращение или желание и даже предупреждают нас об опасности и болезнях. Обоняние помогает нам воспринимать и интерпретировать химический мир вокруг нас, и во многих отношениях оно необходимо для нашей безопасной, здоровой и счастливой жизни. И все же мы склонны пренебрегать этим чувством или считать его пережитком первобытных времен.
Обоняние – не первое чувство, которое приходит на ум, когда мы хотим объяснить, чем отличаемся от других живых существ. Сначала мы вспоминаем про зрение и слух, за ними следуют осязание и вкус. В некоторых случаях даже наше так называемое шестое чувство – якобы существующая особая интуиция – кажется нам более важным, чем обоняние. Не слишком ли это примитивное чувство для нас, цивилизованных людей? Предпочтем ли мы сосредоточиться на четких границах, отделяющих нас от животных, вместо того чтобы принять, что они могут быть несколько размыты? Если мы признаем важность обоняния, некоторые из нас могут почувствовать себя похожими на животных, что вряд ли нам понравится.
Но, судя по тем огромным суммам, которые мы ежегодно тратим на средства для избавления от запахов – или окутывания себя запахами, – кажется, что для многих из нас важно обонять и источать правильный аромат. Это настолько важно для нас, что превратилось в многомиллиардную индустрию. Мы знаем об ароматах, которые специально покупаем, например духи или освежитель воздуха, но в основном не замечаем, как компании постоянно и незаметно подсовывают нам запахи, ароматизируя почти каждый потребительский продукт и окружающую среду.
Когда мы посещаем торговый центр, он обычно ароматизирован, и часто это фирменный аромат. Одежда, которую мы там покупаем, почти наверняка ароматизирована, и это тоже обычно аромат бренда. Даже если мы ничего не покупаем и просто хотим выпить чашечку кофе, соблазняющий нас запах кофе – это, вопреки нашим предположениям, не запах свежемолотых или заваренных зерен, а запах бренда кофе, который варит машина.
Флагманом этой обширной индустрии является корпорация International Flavors and Fragrances, или IFF{27}. Она продает ароматы цистернами, а не маленькими бутылочками, и создана не только для того, чтобы доставлять нам удовольствие или освобождать нас от неприятных запахов. Ароматы – это нечто большее, чем просто человеческое тщеславие.
Почему нос и ноздри на нашем лице занимают такое видное место, если обоняние не является необходимым для выживания?
В некоторых ситуациях оно действительно крайне важно. Обонятельное восприятие постоянно занято анализом. Оно отслеживает качество потенциальной пищи, проверяет окружающую среду на наличие возможных опасностей, а также позволяет нам испытывать тонкие нюансы удовольствия – например, когда мы едим клубнику, потягиваем любимое вино или обнимаемся с любимым человеком.
Аналитическую функцию нашего обоняния легко понять, если сравнить ее с нашим чувством вкуса. Вкус состоит из пяти рудиментарных ощущений (соленого, кислого, горького, сладкого и умами – высокобелковых веществ) и в основном служит для максимально быстрого и рефлекторного удаления вредных веществ изо рта. Обоняние же анализирует химические данные с помощью порядка четырехсот типов рецепторов и позволяет оценить хорошую еду, питье или другие ценные для нас вещи – или, наоборот, запустить реакцию избегания для плохих объектов.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Сноски
1
Цитраль – бесцветная или светло-желтая вязкая жидкость с сильным запахом лимона. – Прим. перев.
Комментарии
1
Crutzen, P. J. & Stoermer, E. F. (2000). The Anthropocene. Global Change Newsletter, 41, 17.
2
Lindsey, R. (2020). Climate Change: Atmospheric Carbon Dioxide. Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.
3
Drake, B. G., Gonzalez-Meler, M. A. & Long, S. P. (1997). MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? Annual review of plant physiology and plant molecular biology, 48, 609–639. https://doi.org/10.1146/annurev.arplant.48.1.609.
4
Goyret, J., Markwell, P. & Raguso, R. (2008). Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 105, 45654570. 10.1073/pnas.0708629105.
5
Majeed, S., Hill, S. & Ignell, R. (2013). Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti. The Journal of experimental biology. 217.10.1242/jeb.092718.
6
Tang, C., Davis, K. E., Delmer, C., Yang, D. & Wills, M. A. (2018). Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae). Communications biology, 1, 182. https://doi.org/10.1038/s42003-018-0191-7.
7
Haugan, P. M. & Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Conversion and Management, 37, 1019–1022. https://doi.org/10.1016/0196-8904 (95)00292-8.
8
Porteus, C., Hubbard, P., Uren Webster, T., van Aerle, R., Canario, A., Santos, E. & Wilson, R. (2018). Near-future CO2 levels impair the olfactory system of a marine fish. Nature Climate Change. 8.10.1038/s41558-018-0224-8.
9
Yeung, L. Y., Murray, L. T., Martinerie, P., Witrant, E., Hu, H., Banerjee, A., Orsi, A. & Chappellaz, J. (2019). Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570 (7760), 224–227. https://doi.org/10.1038/s41586-019-1277-1.
10
Seibold, S., Gossner, M. M., Simons, N. K. et al. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574, 671–674. 10.1038/s41586-019-1684-3.
11
Cook, B., Haverkamp, A., Hansson, B. S. et al. (2020). Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology. 1–10. 10.1007/s10886-020-01211-4.
12
Girling, R., Lusebrink, I., Farthing, E. et al. (2013). Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 3, 2779. https://doi.org/10.1038/srep02779.
13
Kessler, S., Tiedeken, E. J., Simcock, K. L., Derveau, S., Mitchell, J., Softley, S., Stout, J. C. & Wright, G. A. (2015). Bees prefer foods containing neonicotinoid pesticides. Nature, 521 (7550), 74–76. https://doi.org/10.1038/nature14414.
14
K., Lippi, C. A., Johnson, L. R., Neira, M., Rohr, J. R., Ryan, S. J., Savage, V., Shocket, M. S., Sippy, R., Stewart Ibarra, A. M., Thomas, M. B. & Villena, O. (2019). Thermal biology of mosquito-borne disease. Ecology letters, 22 (10), 16901708. https://doi.org/10.1111/ele.13335.
15
www.ngice.mpg.de.
16
Savoca, M., Wohlfeil, M., Ebeler, S. & Nevitt, G. (2016). Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances, 2. e1600395-e1600395.10.1126/sciadv.1600395.
17
Our environment is drowning in plastic, unenvironment. org; https://www.unenvironment.org/interactive/beat-plastic-pollution.
18
Wilcox, C., Puckridge, M., Schuyler, Q., Townsend, K. & Hardesty, B. (2018). A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Scientific Reports. 8.10.1038/s41598-018-30038-z.
19
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports. 2018.10.1038/s41598-018-22939-w.