bannerbanner
Основы тепловых двигателей внутреннего сгорания. Издание II
Основы тепловых двигателей внутреннего сгорания. Издание II

Полная версия

Основы тепловых двигателей внутреннего сгорания. Издание II

Язык: Русский
Год издания: 2024
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 2

P1/T1 = P2/T2.


Изобарный процесс протекает при постоянном давлении (он осуществляется при помещении газа в плотный цилиндр с подвижным поршнем, на который действует постоянная внешняя сила при подведении и отводе теплоты: похожий процесс, например, осуществлялся в старых движителях паровозов, без учета отвода теплоты!).В данном случае при нагревании температура газа повышается и он расширяясь выталкивает поршень из цилиндра; а при отводе теплоты температура газа понижается и поршень, например, под действием внешней силы возвращается в исходное состояние. Этот процесс определяет закон Гей-Люссака: в изобарном процессе обьем, занимаемый данной массой газа, прямо пропорционален температуре


V1/T1 = V2/T2.

Изотермический процесс протекает при неизменной температуре: практически его осуществить очень сложно! Здесь имеем

P1*V1 = P2*V2

Аддиабатный процесс протекает без теплообмена с окружающей средой (также осуществить очень сложно).




Первый закон термодинамики представляет собой закон сохранения энергии для термодинамических процессов: энергия не исчезает и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером является переход теплоты в механическую работу и наоборот.

Если к М кг газа, занимающего при температуре Т обьем V подвести при постоянном давлении некоторое количество теплоты, то в результате этого температура газа повысится, а обьем – увеличится. Если при этом в газе дополнительно никаких процессов не происходит, то на основании закона сохранения энергии можно записать:

dQ = dK + dH + dL,

где dK – изменение средней кинетической энергии газа,

dH – потенциальная энергия взаимодействия молекул газа,

dK + dH = dU – изменение внутренней энергии системы молекул в результате подвода теплоты.

Поэтому 1-й закон термодинамики записывается как:dQ = dU + pdV

и формулируется следующим образом: количество теплоты dQ, подводимое к системе газа, затрачивается на изменение ее внутренней энергии dU и совершение внешней работы dL (которая является непосредственно полезной).

Для того, что бы двигатель совершал при этом практическую работу нужно организовать круговой процесс и периодическое его повторение, поэтому требуется непрерывное повторение процесса расширения рабочим телом (газом).Это может достигаться следующим образом:

1способ: непрерывное удаление из двигателя старого расширившегося рабочего тела и подача нового, которое также будет расширяться,

2способ: рабочее тело после расширения возвращается в исходное состояние путем сжатия, а потом снова расширяется (но на его сжатие должна тратиться работа внешних сил).

Современные двигатели работают по 1-му способу, отчасти используя 2-й. Однако смысл в данном случае сохраняется, так как разница между подводимым теплом и отводимым, определяется совершенной работой самого расширяющегося газа и непосредственно над ним при сжатии. Отсюда возникает понятие о коэффициенте полезного действия тепловой машины как двигателя, который представляет собой отношение количества теплоты, превращенной непосредственно в работу к количеству затраченной теплоты.

Таким образом, исторический смысл второго закона термодинамики, сформулированного С. Карно, а также Т.У.Кельвиным заключается в том, что он формулирует возможность и направление совершения термодинамического процесса и определяет понятие теплового двигателя: «…повсюду, где имеется разность температур, может происходить возникновение движущей силы…,нельзя надеятся использовать всю движущую силу топлива…,невозможно построить вечный двигатель…» (как и еще одна формулировка первого закона термодинамики) – нельзя построить периодически действующую машину, все действия которой сводились бы к производству механической работы и охлаждению одного и того же источника теплоты… Практический же смысл его на сегодня можно привести непосредственно к понятию о коэффициенте полезного действия.



Виды и элементарный состав топлива

Топливом называют горючие вещества, применяемые для получения теплоты при их сжигании. Основные виды топлив: твердые (различные типы углей),жидкие (нефтяные фракции), газообразные (природный и промысловый газ).

Твердые топлива используются в основном для топочных устройств или регенераторов, которые в настоящее время для современных типов двигателей уже практически не используются за исключением паровых котлов и турбин, и бывают следующих видов: древесина, торф, ископаемый уголь, горючие сланцы.

В качестве топлива используются различные виды, обладающие различными качествами, составом, каллорийностью и другими характеристиками. Различают следующие основные виды топлив двигателей различных типов: бензины, дизельные топлива, сжатые и сжиженные газы, спиртовые, рапсовые и прочие технические растворители. Кроме того, для турбинных двигателей и других генераторов может использоваться также водяной пар, как вторичный энергоноситель при сжигании первичного (например, углей различных типов или высококалорийного газа ацетилена) и т. п.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
2 из 2