bannerbanner
Основы тепловых двигателей внутреннего сгорания. Издание II
Основы тепловых двигателей внутреннего сгорания. Издание II

Полная версия

Основы тепловых двигателей внутреннего сгорания. Издание II

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 2

P1/T1 = P2/T2.


Изобарный процесс протекает при постоянном давлении (он осуществляется при помещении газа в плотный цилиндр с подвижным поршнем, на который действует постоянная внешняя сила при подведении и отводе теплоты: похожий процесс, например, осуществлялся в старых движителях паровозов, без учета отвода теплоты!).В данном случае при нагревании температура газа повышается и он расширяясь выталкивает поршень из цилиндра; а при отводе теплоты температура газа понижается и поршень, например, под действием внешней силы возвращается в исходное состояние. Этот процесс определяет закон Гей-Люссака: в изобарном процессе обьем, занимаемый данной массой газа, прямо пропорционален температуре


V1/T1 = V2/T2.

Изотермический процесс протекает при неизменной температуре: практически его осуществить очень сложно! Здесь имеем

P1*V1 = P2*V2

Аддиабатный процесс протекает без теплообмена с окружающей средой (также осуществить очень сложно).




Первый закон термодинамики представляет собой закон сохранения энергии для термодинамических процессов: энергия не исчезает и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером является переход теплоты в механическую работу и наоборот.

Если к М кг газа, занимающего при температуре Т обьем V подвести при постоянном давлении некоторое количество теплоты, то в результате этого температура газа повысится, а обьем – увеличится. Если при этом в газе дополнительно никаких процессов не происходит, то на основании закона сохранения энергии можно записать:

dQ = dK + dH + dL,

где dK – изменение средней кинетической энергии газа,

dH – потенциальная энергия взаимодействия молекул газа,

dK + dH = dU – изменение внутренней энергии системы молекул в результате подвода теплоты.

Поэтому 1-й закон термодинамики записывается как:dQ = dU + pdV

и формулируется следующим образом: количество теплоты dQ, подводимое к системе газа, затрачивается на изменение ее внутренней энергии dU и совершение внешней работы dL (которая является непосредственно полезной).

Для того, что бы двигатель совершал при этом практическую работу нужно организовать круговой процесс и периодическое его повторение, поэтому требуется непрерывное повторение процесса расширения рабочим телом (газом).Это может достигаться следующим образом:

1способ: непрерывное удаление из двигателя старого расширившегося рабочего тела и подача нового, которое также будет расширяться,

2способ: рабочее тело после расширения возвращается в исходное состояние путем сжатия, а потом снова расширяется (но на его сжатие должна тратиться работа внешних сил).

Современные двигатели работают по 1-му способу, отчасти используя 2-й. Однако смысл в данном случае сохраняется, так как разница между подводимым теплом и отводимым, определяется совершенной работой самого расширяющегося газа и непосредственно над ним при сжатии. Отсюда возникает понятие о коэффициенте полезного действия тепловой машины как двигателя, который представляет собой отношение количества теплоты, превращенной непосредственно в работу к количеству затраченной теплоты.

Таким образом, исторический смысл второго закона термодинамики, сформулированного С. Карно, а также Т.У.Кельвиным заключается в том, что он формулирует возможность и направление совершения термодинамического процесса и определяет понятие теплового двигателя: «…повсюду, где имеется разность температур, может происходить возникновение движущей силы…,нельзя надеятся использовать всю движущую силу топлива…,невозможно построить вечный двигатель…» (как и еще одна формулировка первого закона термодинамики) – нельзя построить периодически действующую машину, все действия которой сводились бы к производству механической работы и охлаждению одного и того же источника теплоты… Практический же смысл его на сегодня можно привести непосредственно к понятию о коэффициенте полезного действия.



Виды и элементарный состав топлива

Топливом называют горючие вещества, применяемые для получения теплоты при их сжигании. Основные виды топлив: твердые (различные типы углей),жидкие (нефтяные фракции), газообразные (природный и промысловый газ).

Твердые топлива используются в основном для топочных устройств или регенераторов, которые в настоящее время для современных типов двигателей уже практически не используются за исключением паровых котлов и турбин, и бывают следующих видов: древесина, торф, ископаемый уголь, горючие сланцы.

В качестве топлива используются различные виды, обладающие различными качествами, составом, каллорийностью и другими характеристиками. Различают следующие основные виды топлив двигателей различных типов: бензины, дизельные топлива, сжатые и сжиженные газы, спиртовые, рапсовые и прочие технические растворители. Кроме того, для турбинных двигателей и других генераторов может использоваться также водяной пар, как вторичный энергоноситель при сжигании первичного (например, углей различных типов или высококалорийного газа ацетилена) и т. п.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
2 из 2