bannerbanner
Рожденный жизнью. Уран: от атома до месторождения
Рожденный жизнью. Уран: от атома до месторождения

Полная версия

Рожденный жизнью. Уран: от атома до месторождения

Язык: Русский
Год издания: 2024
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 4

Но вернемся к урану. Были ли немцы обеспечены сырьем для создания атомной бомбы? Однозначно, да. Присоединив Судетскую область, они завладели практически всеми действующими урановыми рудниками Европы. Справедливости ради надо отметить, эти месторождения были разработаны довольно слабо, наиболее освоенным было Яхимовское, но и там для получения промышленных количеств руды нужны были значительные капитальные вложения для увеличения добычи.

Но проводить масштабные работы по добыче урана из европейских месторождений немцам даже не пришлось. Весной 1940 года, начав военную кампанию на Западном фронте, войска вермахта захватили Бельгию. В ходе молниеносного удара немцы завладели 1200 тоннами богатой урановой руды, доставленной из Африки на склады радиевого завода в Оолене, недалеко от Антверпена всего пару месяцев назад. В то время это была половина всего добытого урана в мире! Так что сырья для экспериментов и изготовления атомной бомбы у немецких физиков было в избытке. Об этом говорит и такой факт. В 1943 году, когда Германия начала испытывать острый дефицит вольфрама, использовавшегося в качестве сердечника в бронебойных снарядах, вольфрам стали заменять… ураном. Так что боеприпасы с сердечником из урана – изобретение еще 40-х годов, сделанное немцами не от хорошей жизни6.

После того, как Германия приобрела Судеты и буквально на следующий день прекратила поставки урана из Яхимовских рудников, европейцы заподозрили неладное, а уж когда появилось сообщение Отто Гана и Фрица Штрассмана о делении уранового ядра, стало ясно: немцы активно ведут исследования в области атомной энергии. Но с какой целью?

Наиболее продвинутыми в области изучения атомного ядра в тридцатые годы считались французские ученые. Франция имела отлично оснащенную лабораторию в Коллеж де Франс и государственную поддержку. Немцы на тот момент тоже числились в передовиках, но после того, как к власти пришли нацисты, многие физики-ядерщики из Германии, Италии и Венгрии эмигрировали в Англию и Америку, и самоуверенные европейцы посчитали, что без ученых не арийской крови нацистская Германия не способна на проведение крупномасштабных исследований.

Однако, когда немцы завладели ураном Чехии, затем – Бельгии, захватили Францию и начали боевые действия против англичан, у европейцев снобизма поубавилось, и весной 1940 года британское правительство приступило к финансированию собственного ядерного проекта в тесной кооперации с французами, и в июле того же года британские физики, усиленные пополнением из Франции, сформулировали генеральную идею бомбы.

Оставалось самое сложное: воплотить теорию в изделие, пригодное к применению. Справиться с этим было сложнее. Промышленность Британии не обладала необходимой мощью. Синтезировать идею англичане смогли, присвоив часть интеллектуального труда французов и ученых-эмигрантов других стран Европы. И с сырьем у англичан проблем не возникло – уран, который добывался в Канаде (доминионе Великобритании) для радиевых нужд, был переориентирован на атомный проект, получивший название «Тьюб эллойс» («Tube Alloys»). Но при сооружении производственных систем возникли сбои. Не хватало электроэнергии. Металлургия не располагала технологиями создания сверхпрочных сплавов для работы с химически агрессивными элементами атомного производства. Не существовало аппаратов сверхточной сварки и так далее.

Америка к тому времени вышла из экономического кризиса 30-х годов и обладала мощнейшей индустрией, способной справиться с выпуском изделий любой сложности. Кроме того, Белый дом был способен надавить на партнеров по коалиции, чтобы последние поделились достигнутыми результатами. Что и было изящно проделано Рузвельтом.

В июле 1942 г. для англичан назревала катастрофа в Северной Африке. Немцы подходили к Александрии – оставалось совсем немного, чтобы перекрыть Суэцкий канал и выйти на нефтяные месторождения Ближнего Востока. Черчиллю надо было спасать империю – ему позарез требовалась американская помощь для удара в тыл армии Роммеля со стороны Алжира и Марокко. Рузвельт обещал помочь союзнику, но в обмен предложил перевести работы по «Тьюб эллойс» на американскую землю. Ведь за океаном безопаснее, да и в техническом плане возможностей больше, и, кроме того, сырьевые ресурсы рядом – американцы успели вывезти остававшиеся на складах Конго 1250 тонн урана, да и месторождения Канады и штата Колорадо под боком.

Выхода у лидера трещавшей империи не было, и он вынужден был согласиться. Англичане, «обчистившие» французских коллег с присвоением всех патентов на открытия, сами оказались в положении ограбленных, и к 13 августа 1942 г. все работы по атомному проекту были переведены на территорию США. В этот день родилось и его кодовое наименование «Проект Манхэттен». Англичан и прочих «французов» сразу же отодвинули в сторону. По крайней мере, уже 2 декабря 1942 г. на запуск первого экспериментального реактора англичан не допустили. Спустя годы англичане пытались убедить мир, что именно они были мозгом «Манхэттенского проекта», а американцы выступали только в роли тупой мускульной силы. Тем не менее Англия получила атомное оружие лишь в 1952 году, а Франция – в 1960.

К исходу Второй мировой войны человечество открыло ящик Пандоры, освободив титаническую энергию урана. Согласно греческой мифологии, бог Уран – порождение Хаоса. Мы подошли к черте, когда накопленный на оружейных складах уран способен уничтожить жизнь на планете и опрокинуть ее в Хаос.

Космическая круговерть. Небо в алмазах

Мир распахнулся в центильоны раз.

Соотношенья дико изменились,

Разверзлись бездны звездных Галактей,

И только Богу не хватило места.

Максимилиан Волошин

Зададимся такими вопросами: как вообще появился уран на Земле? Откуда взялись минералы урана? Они всегда были на Земле? Но ведь когда-то и Земли не существовало! Значит, весь уран из космоса? А разве в космосе барражируют минералы урана? Про железные метеориты слышал каждый, а вот про урановые…

Давайте разбираться. И начнем издалека. Из такого далека, в котором ничего не было. Вообще ничего. Даже света. «И сказал Бог: да будет свет. И стал свет…» – и далее по тексту. Если посмотреть с позиций креационизма, все давным-давно описано и разъяснено в книге Бытия: Земля, и все, что на ней и в недрах, было создано в ходе акта Творения, причем ударными темпами.

Если же встать на путь эволюционизма, то процесс формирования нашего мира выглядит несколько дольше недели. Но, что примечательно, космология, как и Библия, утверждает: в Начале Начал произошло отделение Света от Тьмы: примерно 13,8 млрд лет назад случился Большой взрыв, когда Пространство, Энергия и Материя возникли из непостижимой Пустоты. Проверить опытным путем это невозможно, и выводы ученых, как и утверждения теологов, остается принимать на веру.

Собственно, Большой взрыв не привел к образованию минералов. Никакие кристаллические соединения не могли образоваться и тем более сохраниться в бешеном вихре, явившемся из Ниоткуда. По расчетам физиков, понадобилось около полумиллиарда лет, чтобы в остывающем котле Большого взрыва образовались первые атомы – атомы водорода и гелия.

Спустя еще каких-то 300 миллионов лет под действием гравитации возникли первые звезды, в недрах которых начались термоядерные реакции и образование более тяжелых элементов – вплоть до железа. Сегодня принято считать, что все элементы тяжелее железа, в том числе уран, возникли в результате взрывов сверхновых.

Но недавние изыскания специалистов в этой области предполагают более экзотические процессы. Ученые считают, что здесь замешаны так называемые примордиальные черные дыры – небольшие аналоги «обычных» черных дыр звездной массы, возникавшие в первые мгновения жизни Вселенной из особо плотных скоплений темной материи. Они обладали множеством необычных свойств, в том числе способностью проникать внутрь более крупных объектов, не разрывая их на части, как это делают обычные черные дыры7.

При столкновении с пульсаром примордиальная черная дыра буквально «выедает» его изнутри. В соответствии с законами физики, уменьшение радиуса приводит к резкому возрастанию скорости вращения пульсара, да так, что от него начинают отлетать «ошметки».

Материя нейтронной звезды, обладающая сверхвысокой плотностью и полностью состоящая из нейтронов, после подобного «катапультирования» становится нестабильной и превращается в «обычную» материю, при этом рождаются атомы тяжелых элементов.

Именно тогда в космосе появился и уран. Пока только элемент уран, а не его минералы. По оценкам ученых это случилось около 6,6 млрд лет назад. В это же время во Вселенной образовались и первые минералы, это были кристаллы чистого углерода – графит и алмаз. Да-да, небо расцветилось алмазами, правда, чрезвычайно мелкими – размерами с наночастицы. Постепенно к первым углеродистым образованиям начали добавляться и другие высокотемпературные твердые вещества, сложенные из соединений кальция, магния, азота и кислорода.


Перенесемся вперед во времени – примерно на 9 миллиардов лет от Большого взрыва.

На задворках Галактики, где-то на полпути от центра Млечного пути в это время существовало гигантское облако, состоящее из газа и ледяной пыли. Такие межзвездные облака существуют многие миллионы лет без видимых изменений, но иногда какое-нибудь событие может привести к нарушению равновесия, например, ударная волна от взрыва ближайшей звезды. Вероятно, похожий спусковой механизм 4,7 млрд лет назад послужил началом формирования Солнечной системы. Получив импульс начального сжатия и вращения и пополнившись новым веществом, «наше» облако начало сжиматься под действием собственного гравитационного поля. Сначала очень неторопливо вихревые потоки, состоящие из газа и пыли, стали втягиваться внутрь, образуя спираль, сходящуюся в центре формирующегося газового сгустка. По мере нарастающей гравитации облако крутилось все быстрее и быстрее, сжимаясь и ускоряя вращение, оно уплотнялось и расплющивалось в форме диска, в центре которого росло новое небесное тело – наше будущее Светило. Постепенно давление и температура внутри шара поднялись до точки ядерного синтеза, и… Солнце зажглось.

Подробности процессов, сформировавших Землю и другие тела Солнечной системы, частично сохранились в метеоритах. Самые распространенные из них – хондриты, возраст которых определен учеными в 4,65 млрд лет. Они образовались, когда ядерный реактор Солнца пришел в действие и колоссальный выброс энергии воспламенил окружающее пространство. Вспыхнувший огненный смерч сплавил частицы межзвездной пыли в крохотные вязкие капли – хондры (от др.-греч. χόνδρος – зерно, гранула). В результате пульсирующего излучения молодого Солнца хондры переплавлялись и цементировались (спекались) микроскопическими частичками космической пыли – образовывались хондриты. Это происходило в короткий промежуток времени между рождением Солнца и формированием планет.

Вращение газово-пылевого облака продолжалось несколько миллионов лет. В космической центрифуге хондриты сталкивались и спаивались в более крупные тела – планетезимали. Энергия, возникающая при их столкновении, не уступала ядерной, а запредельные температуры и давление приводили к переплавлению хондр и возникновению новых минералов. Наиболее тяжелые из них «стекали» к центру планетезималей, образуя плотное железо-никелевое ядро, которое обрамлялось вязкой оболочкой из минералов кремния.

Столкновение планетезималей не всегда приводило к их слиянию, иногда, соударяясь, они вновь рассыпались на мелкие «брызги», образуя другой тип метеоритов – ахондриты, в которых хондры уже были переплавлены с образованием новых минералов. Из железо-никелевых ядер, разрушенных планетезималей, образовывались железные метеориты, а из краевых «корок» – «каменные».

По оценке американского ученого Роберта Хейзена, минеральная история Вселенной началась с образования всего двух минералов – графита и алмаза, через несколько миллионов лет в звездной пыли присутствовало уже около десятка новых минеральных образований. В хондритах их количество достигает шести десятков, а в ахондритах – порядка 2508.

А что уран? Химические анализы показывают, что в метеоритах он уже содержится. В углеродистых хондритах его содержание достигает 0,0074 ppm (в процентах это составляет – 0,00000074%), в ахондритах – немного больше – 0,07—0,15 ppm (или 0,000007—0,000015%). Но собственно минералы урана в метеоритах пока отсутствуют, в микроскопических количествах он прячется в межзерновом пространстве метеоритов или входит в состав других минералов.


Но не все планетезимали соударяясь вновь рассыпались метеоритами, некоторые достигли очень больших размеров и известны как астероиды, другие и вовсе превратились в планеты, как в малые, так и в полновесные, которые сегодня известны как Марс, Венера, Земля…

Итак, Земля сформировалась. И на ней появился уран. Все-таки из космоса (откуда ж ему еще взяться). Но минералов урана на планете все еще нет. Молодая Земля слеплена из мешанины хондритов, ахондритов, обломков мелких планетезималей, протопланет, и на ней царит первозданный хаос.

Одни исследователи, как, например, Р. Хейзен или В. Е. Хаин, считают, что Земля формировалась как раскаленный шар и первые земные минералы начали формироваться на поверхности остывающей планеты на границе с холодным космосом. Другие, как О. Ю. Шмидт или Дж. Койпер, полагают, что Земля никогда не была полностью расплавленным космическим телом. Изначально она была холодной, и падающие планетезимали только обжигали Землю, но при отсутствии атмосферы место удара быстро остывало.

Новорожденная Земля, «роды» которой продолжались порядка 10 миллионов лет, имела достаточно однородный состав – не существовало еще ни земного ядра, ни коры, ни атмосферы, ни гидросферы. Первичное вещество планеты по усредненному составу представляло резко выраженную ультраосновную породу. Планета представляла собой суровую холодную пустыню с черным небом, яркими немигающими звездами, желтым слабо греющим Солнцем, светимость которого была на 25—30% ниже современной, и непомерно большим диском Луны. Рельеф напоминал испещренную кратерами поверхность Луны, недра были сложены темно-серым первичным веществом. Других пород на Земле пока не существовало.

Изначально холодной была наша юная планета или представляла раскаленный шар, можно было бы с уверенностью сказать, имея в руках неопровержимые доказательства в виде сохранившегося каменного материала первичного вещества. Сегодня можно делать самые различные предположения о том, чем была изначально сложена поверхность Земли, но пикантность ситуации в том, что первоначальные породы, покрывавшие тогда планету, не сохранились, они… утонули. В этом сходятся апологеты как «холодной», так и «горячей» теории происхождения Земли. Правда, они предлагают различные варианты течения событий, но сходятся в одном: в ходе развития планеты первичное вещество оказалось тяжелее и опустилось в раскаленную магму, где переплавилось с образованием новых минералов и горных пород.

Несмотря на колоссальные усилия геологов всего мира найти самые древние породы Земли, достоверно определенный возраст наиболее древних образований не превышает 3,75—3,8 млрд лет, в то время как возраст планеты определяется в 4,6 млрд лет. То есть никаких материальных свидетельств о составе земли за первые 800 миллионов лет не сохранилось? Почти не сохранилось!

В начале века появились сообщения австралийских геологов о находках обломочных зерен минерала циркона, с возрастом… 4,2—4,3 и даже 4,4 млрд лет. О них стоит рассказать подробнее. Тем более что уран имеет к ним прямое отношение.


Уран очень долго не мог обзавестись собственными минералами – более полутора миллиардов лет он находил себе убежища на поверхностях и в микротрещинах пород, входил в состав расплавов, растворов, в общем, крутился как мог. Значительное количество атомов урана приютилось в кристаллических решетках чужих минералов, где они и расположились с комфортом, словно кукушата в неродном гнезде.

Процесс этот в минеральном царстве не так уж и редок и называется изоморфизмом – когда атомы одного химического элемента замещают в кристаллической решетке атомы другого, сходного по размерам. Чаще всего «для проживания» атомы урана выбирали именно минерал циркон (Рис. 1). Надо сказать, что и выбор минералов первые полтора миллиарда лет был не слишком богат. Циркон оказался очень гостеприимным: его кристаллы помимо урана часто вмещают атомы гафния, редких земель, ниобия, тантала, тория; содержания урана в цирконе достигают 1,5%, а иногда и больше!


Рис. 1. Зерно циркона под микроскопом. Увеличение 320 раз.

По [Таусон, 19619]. а – микрофотография зерна; б – микрорадиография того же зерна. Темные полоски – треки от распадающихся радиоактивных элементов


Химический элемент цирконий обзавелся собственным кристаллическим «домом» одним из первых на Земле, при этом получившийся минерал циркон оказался на редкость прочным. Хотя он и уступает по твердости алмазу, но в отличие от последнего стойко переносит ударные нагрузки.

Изучая архейские конгломераты и песчаники возрастом 3,5 млрд лет, австралийские ученые выделили из них небольшие кристаллики цирконов, возраст которых оказался равным почти 4,4 млрд лет10. Как такое может быть – породы одного возраста, а минералы в ней намного старше? Объяснение простое: цирконы были вымыты из более древних, первозданных пород.

В неблагоприятных химических условиях кристаллы циркона начинают растворяться, но только лишь обстановка наладится, они снова приступают к самосборке, словно птица Феникс. Процесс этот исследован еще недостаточно. Как отмечает Т. В. Каулина (доктор геолого-минералогических наук, сотрудник Кольского научного центра РАН): «Практически нет работ, посвященных выявлению общих закономерностей образования и преобразования циркона в природе». Кроме того, нам почти ничего не известно о том, какова была химическая среда на протопланетной поверхности11. Среди архидревних кристаллов циркона попадаются экземпляры с «луковичным» строением, сердцевина которых окружена рядом более молодых слоев. При этом прослеживается закономерность – чем ближе к центру минерала, тем богаче концентрация урана: кристаллы циркона частично растворялись, выпуская в «свободный полет» своих урановых и прочих «кукушат», входящих в кристаллическую решетку, а затем обрастали новыми, уже «очищенными» слоями (Рис. 2).

На разрушение цирконового «убежища» влияли не только внешние факторы среды, но и некоторые «квартиранты». Радиоактивные частицы, образующиеся в ходе распада урана, разрушали структуру циркона изнутри, в результате чего он становился метамиктным12. Конечным продуктом радиоактивного превращения урана является радиогенный свинец, размер атомов которого больше, чем у элементов, входящих в минерал циркон. Атомы свинца втискиваются в кристаллическую решетку циркона, словно медведь в теремок, и кристалл как бы «распирает». Его правильная форма нарушается. Такой циркон называют уже иначе – циртолитом13.


Рис. 2. Фотография зонального циркона, полученная катодолюминисцентным методом. Для наглядности зоны окрашены. Возраст кристалла около 4,4 млрд лет. [Изображение с сайта livescience.com14].

Радиусы атомов, составляющих минерал циркон (ZrSiO4) следующие:

цирконий Zr – 160 пм, кремний Si – 132 пм, кислород О – 60 пм,

уран U – 138 пм, а свинец Pb – 175 пм.


Пикометр (пм) – единица измерения длины, равная одной триллионной (то есть 1/1.000.000.000.000) части метра. Пикометр меньше нанометра в тысячу раз.

Известно, что элемент уран состоит из двух основных изотопов: 235U и 238U, – причем 235U распадается быстрее, а значит миллиарды лет назад его было больше. Поэтому процесс разрушения кристаллической решетки циркона протекал тогда быстрее15. Но существовал в то время еще один, еще более короткоживущий радиоактивный изотоп – плутоний-244.


В журнале «Science» в октябре 2004 года была опубликована статья американских геологов16, в которой приводились доказательства былого наличия плутония-244 (244Pu) в исследованных цирконах. Этот ныне потухший изотоп имел период полураспада всего 82 миллиона лет и «вымер» в течение первых 600 миллионов лет после образования Земли. Но его присутствие еще более ускоряло процесс разрушения древних цирконов.

Освобождавшиеся из кристаллической решетки атомы урана «выпархивали» на свободу и при благоприятных обстоятельствах готовы были образовывать свои устойчивые минеральные соединения.

Кроме циркона уран в виде изоморфных включений входит в состав апатита, монацита, пирохлора, колумбита и других минералов, правда, не в таких количествах.

Да, у геологов нет образцов первичных пород Земли, и все же, в их руках есть реальные «образцы» урана того времени. Правда, микроскопические. Ну, уж что сохранилось…

Молодая земля.

Космическое вещество превращается в земное. Первая минералогическая революция

Из вихрей и противоборств возник

Мир осязаемых

И стойких равновесий.

И равновесье стало веществом.

Но этот мир разумный и жестокий

Был обречен природой на распад.

Максимилиан Волошин

Итак, Земля сформировалась. Что увидел бы геолог, попади он на новорожденную планету?

Во-первых, ему потребовался бы скафандр. Атмосферы на Земле не было – ни кислородной, ни бескислородной. Газы во время образования планет Солнечной системы унесло солнечным ветром далеко на периферию, где и образовались планеты-гиганты: Юпитер, Сатурн, Уран и Нептун, состоящие в значительной мере из водорода, гелия, аммиака, метана и прочих летучих компонентов. Так что, если бы на юной Земле и образовалась какая-никакая атмосфера – ее бы тотчас сдуло. Гидросферы на планете тоже не было: ни рек, ни морей, ни облаков, ни подземных вод.

Во-вторых, ноги геолога проваливались бы в реголит, который покрывал поверхность планеты. Минералогический анализ отобранных проб показал бы, что вся планета состоит всего из 2—3 сотен минералов17, среди которых преобладали самородное (метеоритное) железо и его сплавы с никелем (камасит и тэнит), а также железисто-магнезиальные силикаты, обобщенную формулу которых можно представить в виде R2 [SiO4], где «R» это Mg, Fe2+, Mn и Ca в разных пропорциях. Изредка можно было встретить оливин, пироксены, плагиоклаз, графит, циркон, хромит, магнетит, апатит и микроскопические кристаллы алмаза. А если бы была возможность пробурить скважину хоть до центра планеты – образцы пород и минералов с глубины оставались бы те же. Ведь Земля на первых порах представляла хаотическое скопление спрессованных гравитацией однородных обломков планетезималей и метеоритов.

Вулканов на поверхности планеты пока не было, зато в районе экватора вокруг Земли, словно кольцо вокруг современного Сатурна, еще вращался остаточный рой мелких планетезималей. Падая на Землю, они взрывались, перепахивая и размельчая реголит. Колоссальные температуры, возникающие при ударах, быстро гасились окружающим холодным космосом. Но и этот остаточный рой вскоре иссяк, и вблизи Земли осталось только одно космическое тело – Луна. Ее восходы и закаты представляли пугающе-завораживающую картину: низко нависающий лунный диск занимал добрую половину небосвода – его видимые размеры в 300—350 раз превышали сегодняшние. И если бы наш геолог действительно оказался в это время на планете, он погиб бы от ежесуточных перепадов давления, создаваемого притяжением нашего спутника.

Новорожденная Земля представляла равновесную систему. И все-таки этот мир, по словам Максимилиана Волошина, «был обречен природой на распад». И космическое вещество неотвратимо стало переплавляться в земное. Процесс происходил крайне медленно, да и «раскачалась» Земля не сразу, а произошло это благодаря процессу, который запустила… Луна.

Общеизвестно, наша спутница создает на Земле приливные волны, которые на побережье морей и океанов можно наблюдать воочию. Но Луна влияет и на земную твердь, правда, сегодня для глаза это не заметно, однако на самых ранних этапах развития Земли, когда лунный диск нависал над планетой на высоте всего 7000 км, высота приливов достигала 1,5 км! Причем, воздымалась сама Земля, океанов в то время еще не было. Впрочем, и сейчас вблизи подлунной точки твердая Земля поднимается на 46 сантиметров.

И вращалась планета в то время значительно быстрее – сутки составляли всего 6 часов: Солнцу хватало три часа, чтобы пересечь небосвод и через три часа вновь взойти с востока над безжизненным горизонтом. Наша спутница не могла с такой же скоростью оборачиваться вокруг планеты, поэтому приливной «горб», возникающий на поверхности Земли, постоянно опережал Луну, убегая вперед. Луна же своим притяжением изо всех сил пыталась тормозить убегающую каменную приливную волну, в результате вращение Земли постепенно замедлялось. Но Луна с такой силой тянула этот «горб» на себя, что сама «отклонялась» в обратную сторону – то есть радиус лунной орбиты постоянно возрастал. С точки зрения физики, Луна отдалялась от Земли согласно действию кинетической энергии вращающегося тела (Рис. 3). Сегодня Луна уходит от Земли со скоростью 4 см в год и находится на расстоянии 384,4 тысячи км.

На страницу:
2 из 4