Полная версия
Душа машины. Радикальный поворот к человекоподобию систем искусственного интеллекта
Часть I нынешней книги называется «Преобразующие инновации: сила IDEAS». В ней мы обсуждаем новые подходы к искусственному интеллекту, данным, экспертному знанию, архитектуре и стратегии – они определяют ход технического прогресса. В части II – «Конкуренция в тотально очеловеченном будущем» – речь идет о том, как ведущие компании мира используют технологические новинки, добиваясь преимущества в ключевых сферах: кадровой политике, доверии, опыте и устойчивости развития.
Каждый из перечисленных аспектов с начала нового века вызывает – в той или иной мере – тревожный интерес у многих предпринимателей. Однако сейчас он получает особое значение. Технически грамотные кадры в большом дефиците; вопрос доверия встал особенно остро с началом пандемии; уникальные виды опыта, обогащенного новыми технологиями, дарят почти безграничные возможности потребителям, работникам и активным гражданам, а устойчивость становится важнее с каждым днем.
Искусственный интеллект и связанные с ним технологии могут обеспечить в каждой из перечисленных сфер значительный отрыв от конкурентов. Компаниям любого профиля – не обязательно близким к IT-индустрии – придется работать в условиях радикального разворота к человеку, который полностью меняет представления о конкуренции. Финансовые показатели, репутация бренда, ценностное предложение во многом будут определяться вниманием к кадровой политике, доверию, опыту и устойчивости развития.
Кто же победит в этой гонке? Пока ответ не очевиден. Результаты нашего второго исследования (доходы лидеров сейчас растут в пять раз быстрее, чем аутсайдеров) вроде бы намекают: настала эпоха победителей, которые получают все. Однако и первое аналогичное исследование, проведенное во время пандемии, обнаружило компании, резко улучшившие показатели.
Совершившие скачок – среди опрошенных их оказалось около 18 % – взяли на вооружение новые гуманистические технологии и широко внедрили их на производстве, изменив структуру организации для получения от перемен максимальной пользы. Бюджеты IT-отделов начали подстраивать не под операционную, а под инновационную деятельность.
С 2018 по 2020 год прорывные компании росли вчетверо быстрее отстающих, а во время пандемии опередили некоторых лидеров. Сделав ставку на сжатую трансформацию, эти компании прекрасно показали: даже наименее технологически развитые организации могут совершить огромный сверхприбыльный рывок вперед.
Будущее с человеческим лицомЧто же означает радикальный разворот к человеку для каждого из нас и для общества в целом? Могут ли предприниматели помочь в достижении социальной справедливости? Что нужно сделать для блага сотрудников, потребителей и сообществ? И как при этом добиться финансового благополучия?
Сначала мы создаем инструменты, затем инструменты создают нас[5]. Эта мысль – прекрасная философская основа для размышлений. Молоток. Колесо. Телевизор. Искусственный интеллект. Каждый инструмент, созданный для выполнения конкретной задачи, со временем заставляет переосмыслить мироустройство, наше место в нем, нашу суть и наши перспективы – плохие и хорошие.
В книге «Человек + машина» мы отмечали: ведущие компании мира не заставляют людей драться с машинами за рабочие места. Они делают ставку на взаимодействие человека и машины ради результата, которого не добилась бы ни одна из сторон по отдельности. Гармоничный союз людей и созданных ими инструментов и есть главная цель радикального разворота к человеку в сфере цифровых технологий.
Не все решения должны быть высокотехнологичными. Однако современные технологии, безусловно, входят в число самых мощных и доступных инструментов социального преобразования, особенно когда к ним добавляются внятная политика и здоровая забота о человеческом благе и достоинстве. Потенциал новейших технологий – еще один довод в пользу того, что в них стоит разобраться. Ведь если что-то пойдет не так, то замечать ошибки и корректировать инструменты придется быстро.
В этой книге вы найдете истории ученых, предпринимателей, руководителей и целых организаций, которые внедряют технологии радикального очеловечивания в практику повседневной жизни, тем самым меняя ход прогресса, наш мир и нас самих. В этих историях много принципиально нового, но в некотором отношении они стары как мир.
Человечество с давних пор мечтает, чтобы путь к успеху был также и путем добра. Что нужно, чтобы пройти его всем вместе? Пусть эта книга поможет вам найти ответ.
Часть I. Преобразующие инновации: сила IDEAS
Глава 1. Интеллект
Больше человеческого, меньше искусственного«Могут ли машины мыслить?»
Именно так Алан Тьюринг начал свою знаменитую статью «Вычислительные машины и разум», опубликованную в 1950 году[6]. С тех пор было много споров о «тесте Тьюринга»: может ли компьютер заставить нас поверить, что он человек? Сам Тьюринг никогда не утверждал, что компьютеры действительно способны думать. Однако это не помешало писателям-фантастам и простым обывателям представлять – обычно с ужасом – машины, наделенные человеческим сознанием.
Это не про нас.
Тотальное очеловечивание, которое мы сейчас наблюдаем в развитии искусственного интеллекта, заключается не в воспроизведении человеческого сознания. Речь идет о решении проблем путем использования самых мощных когнитивных характеристик человека, усиленных вычислительными мощностями современных компьютеров. Это ведет нас не к господству машин, а к появлению более полных, эффективных, доступных и инновационных средств для решения социальных проблем и задач, стоящих перед коммерческими компаниями.
«И малое дитя будет водить их»[7]
Любой машине, управляемой искусственным интеллектом, очень далеко до той легкости и эффективности, с которой даже малые дети учатся, понимают и воспринимают контекст. Если вы случайно уроните карандаш и годовалый ребенок увидит, как вы тянетесь за ним, он подберет его и подаст. Бросьте его специально – и ребенок проигнорирует это[8]. Другими словами, даже груднички понимают, что у других людей есть намерения – выдающаяся когнитивная способность, которая, кажется, по умолчанию предустановлена в человеческий мозг.
Но это еще не все. С самого раннего возраста у детей развивается интуитивное «чувство физики»: они начинают предугадывать, что предметы будут двигаться по плавным траекториям, не исчезнут сами по себе, что без опоры они упадут и что с ними нельзя взаимодействовать на расстоянии. Еще не научившись говорить, малыши отличают одушевленных существ от неодушевленных предметов. По мере освоения языка они проявляют замечательную способность к обобщению на основе очень небольшого ряда: им достаточно одного-двух примеров, чтобы понять значение нового слова[9]. А еще дети самостоятельно, путем проб и ошибок, учатся ходить.
Искусственный интеллект может делать многое из того, что от природы наделенные разумом люди считают невозможным или трудновыполнимым. Например: обнаруживать закономерности в огромных массивах данных; побеждать величайших шахматистов и чемпионов игры в го; запускать сложные производственные процессы; эффективно обслуживать клиентов в чатах и кол-центрах; анализировать изменения погоды, состояние почвы и спутниковые снимки, чтобы помочь фермерам повысить урожайность; сканировать миллионы интернет-изображений для борьбы с эксплуатацией детей; выявлять финансовые мошенничества; прогнозировать запросы потребителей; персонализировать рекламу и многое другое.
Автоматизация таких задач выходит за рамки не только возможностей человека, но и традиционной логики процедурного программирования. Самое главное, что искусственный интеллект позволил людям и машинам дополнять друг друга, превращая механистические процессы в высокоадаптивные, органичные и ориентированные на человека виды деятельности. Вопреки опасениям противников автоматизации, такое сотрудничество создает множество новых высокооплачиваемых рабочих мест[10].
Неудивительно, что внедрение искусственного интеллекта стремительно набирает обороты во всех отраслях по всему земному шару. Согласно проведенному в 2019 году опросу, компании планировали в 2020 году удвоить число связанных с искусственным интеллектом проектов, а к 2022-му реализовать по 35 проектов в этой области или области машинного обучения[11]. Для сравнения: в 2019 году таких проектов было в среднем 14 на компанию.
Что ускоряет внедрение? В производстве используются новые модели искусственного интеллекта. Специализированное аппаратное обеспечение расширяет их возможности и помогает быстрее получать результаты обработки больших массивов данных. Упрощенные и меньшие по размеру инструменты позволяют ИИ работать практически на любом устройстве. Облачные сервисы обеспечивают доступ к ИИ-ресурсам из любой точки планеты и дают возможность масштабировать модели в соответствии с нуждами бизнеса.
Необходимость интегрировать данные из многих источников, решать сложные задачи бизнеса и компьютерной логики, а также конкуренция, заставляющая придавать данным более удобную для пользователей форму, ускоряют внедрение искусственного интеллекта. И конечно, оказалось очень велико влияние пандемии.
Наше недавнее исследование показало: более чем три четверти крупных компаний реализуют инициативы по глубокому обучению[12]. Глубокое обучение – это мощная подгруппа методов машинного обучения. В его основе лежат нейросети, состоящие из простых нейроноподобных блоков обработки данных, вместе выполняющих сложные вычисления. Работающий по этому принципу искусственный интеллект должен обучаться методом «снизу вверх» на огромном массиве данных и нередко для более тонкой настройки использовать дополнительные данные. Но этот «жадный до данных» подход имеет существенные ограничения – по мощности, доступности и устойчивости, как мы увидим в следующей главе.
Между тем на переднем крае исследований природа машинного интеллекта становится абсолютно человеческой – менее искусственной и более разумной, походящей не на беспилотный автомобиль, который нужно кропотливо тренировать, а на человеческого младенца, обладающего удивительно эффективной способностью к обучению.
Все это должно заставить топ-менеджеров задуматься о расходах на технологии в ближайшие три-пять лет. С одной стороны, стоящие перед глубоким обучением проблемы огромны и для многих компаний непреодолимы. С другой – глубокое обучение дало так много открытий и ценных результатов, что в ближайшее время оно не уйдет из практики. Согласно планам участвовавших в нашем опросе компаний, эти технологии из разряда необязательных перешли в необходимые.
Однако поиски искусственного интеллекта, наиболее близкого к человеческому, откладывались несколько десятилетий. Теперь же они обрели новую жизнь в попытках преодолеть ограничения нынешних подходов к интеллекту. Для высших руководителей это преодоление начинается с понимания имеющихся ограничений.
Проблема с интеллектомАвторы MIT Technology Review проанализировали исследования в области искусственного интеллекта за последние 25 лет (а это 6625 научных работ) и пришли к выводу: глубокое обучение, доминировавшее в этой области последние десять лет, может пойти на спад[13]. Однако оно не исчезнет – останется мощным инструментом для решения некоторых узкоспециальных задач.
Оно будет важным элементом в широком спектре сложных методов, которые в машинном интеллекте склонят чашу весов в пользу человеческого, а не искусственного. Но идея, что глубокое обучение – если ему только дать достаточно времени и скормить достаточно данных – приведет нас к созданию всеобъемлющего искусственного интеллекта, выглядит все менее вероятной.
Многие системы искусственного интеллекта не так уж и умны
Начнем с того, что системы глубокого обучения по необъяснимым причинам часто заходят в тупик. Рассмотрим, как искусственный интеллект распознает объекты на изображениях, – в последнее время это один из самых успешных примеров его применения, хотя с 2017 года прогресс здесь незначительный.
Проект ImageNet, поддерживаемый Стэнфордским университетом, представляет собой общедоступную базу вручную аннотированных изображений из более чем 14 миллионов экземпляров более чем 20 тысяч категорий. Этот массив данных использовался для обучения многих знакомых нам инструментов для идентификации изображений – таких, как Bing от Microsoft, например.
Однако около 7500 реальных фотографий, собранных исследователями, сбивают с толку современные системы компьютерного зрения (так, бегущий юноша на фото был принят за одноколесный велосипед), и при использовании подобных изображений точность падает с 95 до 2 %[14]. То есть отдельные из самых мощных в мире систем компьютерного зрения правильно идентифицируют эти изображения только в двух случаях из ста. А когда на кону не просто корректная классификация, а подлинное распознавание объекта, как в случае с управляемыми искусственным интеллектом автомобилями или дронами, неудачи могут иметь фатальные последствия.
Проблема черного ящика и работа сложных систем
Системы искусственного интеллекта часто используют при принятии важных решений. Кому одобрят кредит? Кого возьмут на работу? Кто получит условно-досрочное освобождение? На какой срок человек попадет в тюрьму? Почему беспилотный автомобиль совершает опасный маневр? Каким именно образом реклама компании распространяется в социальных сетях? И так далее. Однако многие из этих систем (особенно те, которые используют глубокое обучение) непрозрачны.
Невозможно объяснить, как алгоритмы, работающие с огромным количеством параметров и множеством хитросплетенных уровней абстрагирования, делают те или иные выводы. А ведь они иногда могут обернуться катастрофой – приводить к расовой дискриминации в сфере кредитования и судебных решений по уголовным делам, к чудовищным ДТП или к тому, что онлайн-реклама уважаемых брендов появится рядом с неонацистским или конспирологическим контентом.
Стремление сделать искусственный интеллект объяснимым, законодательно закрепленное в Общем регламенте Европейского союза о защите данных, вызывает вопрос: объяснимым для кого? Трактовки ищут разные заинтересованные стороны. А трудности возникают даже при использовании относительно простой системы оценки кредитного риска[15].
Разработчики программного обеспечения и системные администраторы хотят получить разъяснение с точки зрения архитектуры и параметров обработки данных. Опытному кредитному специалисту, принимающему окончательное решение, возможно, понадобится информация о том, как система учитывала разные факторы, выдавая рекомендацию. Заявитель хочет понять, почему ему отказали: из-за возраста, расы, места проживания, плохой кредитной истории?
Регулятору важно быть уверенным, что система не нарушает конфиденциальности данных и антидискриминационных законов и что она неуязвима для финансовых мошенников. Неспециалист, размышляющий о проблеме черного ящика в целом, может захотеть узнать, зачем кому-то создавать машину, действий которой он не понимает.
Системы глубокого обучения не умеют читать
Мы можем собрать все книги мира в огромную базу данных с возможностью поиска (как в Google Books) и разработать программы машинного чтения, чтобы обнаружить все присутствующие виды взаимосвязей. Но ни одна из существующих систем искусственного интеллекта не может читать и понимать прочитанное даже на уровне маленького ребенка.
Исследователи Гэри Маркус и Эрнест Дэвис задали сервису Google Talk to Books простой вопрос: «Где Гарри Поттер встретил Гермиону Грейнджер?» Ни один из двадцати предложенных ответов не относился к книге «Гарри Поттер и философский камень» и ни в одном не содержалось информации, где же произошла встреча[16].
Смартфоны могут относительно хорошо исправлять опечатки или предлагать следующее слово в предложении. Программы-переводчики выдают вполне сносные переводы со многих языков. Но ни одно из этих приложений – как и никакие другие – не дает базовых знаний, чувства контекста и бесчисленных предположений о реальности, необходимых для понимания прочитанного.
Им не хватает базовых знаний
А именно: понимания пространства, времени и причинно-следственных связей – того, чему люди, подобно младенцу, достающему карандаш, научаются без видимых усилий[17].
Возьмем причинно-следственные связи – важнейший компонент рационального мышления. Во многом успех глубокого обучения был обусловлен мощной способностью находить корреляции, например между совокупностью симптомов и конкретным заболеванием. Но корреляция – это не причинно-следственная связь. Если бы машины понимали, что одно является следствием другого, их не нужно было бы переучивать под каждую новую задачу[18]. Вместо этого они могли бы применять свои знания из одной области к другим областям.
Будущее радикально человеческого интеллектаНесмотря на достижения когнитивной психологии и нейронаук, мы так и не знаем, каким образом человеческий мозг с его очень ограниченными вычислительными ресурсами творит удивительные вещи. Нам в целом известно, что представляют собой некоторые из основных структурных блоков человеческого разума, и первопроходцы начинают создавать их машинные аналоги.
Авторы работы «Создание машин, которые учатся и думают как люди», основополагающей в этом новом направлении в развитии машинного интеллекта, считают: «До тех пор, пока естественный интеллект остается непревзойденным, реверсивный инжиниринг[19] человеческих решений для сложных вычислительных проблем будет продолжать информировать и развивать искусственный интеллект»[20].
Вопрос уровня топ-менеджеров: какие из описанных ниже когнитивных способностей, более похожих на человеческие, актуальны для создания ценности и предоставления ее клиентам в их бизнесе?
Обобщение в условиях реального мираПока теоретики яростно спорят о глубоком обучении и некой идеальной версии искусственного интеллекта, способной сделать его похожим на человеческий, практики действуют. Они используют все дисциплины ИИ как средство поиска новых перспектив, расширяющих возможности и увеличивающих производительность машин.
Рассмотрим в качестве примера грядущее поколение логистических и складских роботов, созданных по технологии, которая может оказать огромное влияние на деятельность и прибыль компаний во многих отраслях. В автоматизированных центрах обработки и выполнения заказов с многокилометровыми складскими стеллажами роботы выполняют большую часть тяжелой работы и начальные этапы комплектации.
Но автоматизированные системы сталкиваются с сотнями тысяч артикулов, которые часто меняются. А значит, либо эти системы должны быть разработаны для подбора определенной категории товаров, либо их придется обучать подбору каждого товара. Но тогда при добавлении новых товаров их необходимо будет вносить в систему вручную, что крайне нерационально.
Именно поэтому складские работники во многих отношениях превосходят нынешнее поколение роботов-сборщиков. Людей не нужно переучивать под каждый новый товар. Они могут обобщать свой опыт, легко отличать один объект от другого и быстро определять, как лучше обращаться с предметом, чтобы его не повредить. Но центры обработки заказов, нацеленные на доставку в тот же день или даже в течение часа, страдают от текучки кадров и ограничений в объеме и скорости работы, связанных с человеческими возможностями.
Немецкая компания Obeta, занимающаяся оптовыми продажами электроники, совместно с австрийской логистической компанией KNAPP AG запустила на своих складах новое поколение роботов-сборщиков, способных менять правила игры. От предыдущих поколений их отличает искусственный интеллект от Covariant – стартапа, основанного робототехниками из Калифорнийского университета в Беркли и исследовательской лаборатории Open AI.
Благодаря ИИ от Covariant роботы обучаются 3D-восприятию, пониманию физических возможностей объектов, планированию движения в реальном времени, а также методу «на раз-два-три»: освоению задачи в результате выполнения нескольких тренировочных примеров. Наличие общих способностей позволяет роботам быстро научиться манипулировать объектами без команд извне[21]. Задача роботов заключается в том, чтобы выбрать товары на оптовом складе и добавить их в индивидуальные заказы для отправки.
Один из посетителей штаб-квартиры Covariant описал технологию в действии: «Я наблюдал, как три разных робота мастерски собирают заказ из всевозможных товаров. За считаные секунды алгоритм анализирует положение предметов, рассчитывает угол атаки и последовательность движений, а затем вытягивает руку, чтобы захватить товар с помощью присоски. Он движется уверенно и точно, меняя скорость в зависимости от хрупкости покупки»[22].
В роботах используются готовый промышленный манипулятор, захват с присоской и система технического зрения. Система технического зрения соединена с захватом с помощью Covariant Brain – программной платформы, не зависящей от аппаратного обеспечения. Она призвана стать универсальным искусственным интеллектом для роботов в любой клиентской среде – единой нейросетью, способной адаптироваться к разнообразным условиям.
«Наша система делает выводы об объектах, которые никогда раньше не встречала. Видеть полную картину и понимать, как взаимодействовать с отдельными предметами, включая совершенно незнакомые, – это человеческая способность и это, по сути, общий интеллект, – говорит Питер Эббил, один из основателей компании. – Такое обобщенное понимание того, что находится в корзине, является ключом к успеху. В этом разница между традиционной системой, где вы заранее каталогизируете все товары и пытаетесь их распознать, и складами, где у вас много артикулов и постоянно появляются новые»[23].
Назвать эту систему гибридной вряд ли справедливо по отношению ко всем техникам, которые использовались для наделения ее способностью к обобщению. Covariant использует широкий спектр методов, включая имитационное обучение и обучение с подкреплением.
Например, чтобы обучить робота взаимодействовать с новым набором предметов, их раскладывают перед ним и смотрят, сумеет ли он правильно сориентироваться. В случае неудачи робот может обновить свое представление о том, что он видит, и попробовать другие подходы. Добиваясь успеха, он получает вознаграждающий сигнал, который подкрепляет обучение.
Когда набор артикулов совсем ни на что не похож, Covariant вынужден вернуться к обучению с учителем – сбору и маркировке большого количества новых обучающих данных, как в системах глубокого обучения.
Чтобы добиться успеха в коммерческой среде, роботы должны работать на очень высоком уровне. Ранее роботы-сборщики KNAPP надежно обрабатывали около 15 % объектов; теперь же, оснащенные технологией Covariant, они справляются с 95 % объектов[24]. За час робот собирает около 600 объектов, а человек – 450. И тем не менее в компании Obeta не сократили ни одного сотрудника.
По словам Питера Пухвайна, вице-президента по инновациям компании KNAPP, персонал прошел переподготовку, чтобы лучше разбираться в робототехнике и компьютерах[25]. Тем временем компания Covariant собирается развивать платформу Brain, чтобы использовать роботов в производстве, сельском хозяйстве, гостиничном бизнесе, на промышленных кухнях и в конечном счете в домах людей.
Выживает сильнейший алгоритмНерелевантные результаты поиска – вечная головная боль для интернет-магазинов вроде Zappos. Запросы могут иметь несколько разных значений для поисковой системы сайта, поэтому получить точные результаты порой непросто. Потенциальные клиенты, подбирающие туфли к платью определенного стиля и получающие платья вместо туфель, вскоре от этого устанут и перейдут к конкурентам. Чтобы решить эту проблему, Zappos сталкивает алгоритмы друг с другом в цифровой игре «Выживший».
Эти так называемые генетические алгоритмы, по сути, являются алгоритмами рандомизированного поиска, имитирующими механику естественного отбора. В этом процессе человек, наткнувшись на полезные результаты, использует их, – например, оптимизирует маршруты доставки или проектирует легкие, но прочные конструкции.
Генетические алгоритмы были впервые представлены в 1960 году Джоном Холландом, крупным ученым в области психологии, электротехники и информатики, но применять их стали лишь недавно: раньше не хватало вычислительных мощностей. Компания Zappos начала экспериментировать с генетическими алгоритмами в 2017 году.
В то время на сайте компании ежемесячно появлялось около миллиона уникальных поисковых запросов. Поисковая система должна была сопоставить эти запросы с более чем 100 000 позиций в каталоге[26]. Генетические алгоритмы моделируют процесс естественного отбора – по Дарвину. Система Zappos, например, создает алгоритмы, которые определяют смысл поисковой фразы.
Один алгоритм рассматривает в определенной фразе как сильный сигнал слово «платье». Конкурирующий алгоритм в этом же запросе уделяет больше внимания другим словам. «Тест на релевантность», имитирующий поведение пользователей, вознаграждает победителя и передает его черты следующему поколению. Алгоритм, который лучше всех справился с поставленной задачей, и начинает работать на сайте, пока его не заменят более эффективным. Таким образом, поисковая система постоянно совершенствуется.