
Полная версия
Новые технологии закрученных течений
Существенным недостатком всех систем разделения газа или жидкости при закручивании в цилиндрической или конической камере на две температурные фракции заключается в обязательном наличии отдельного нагнетателя, не возможность реверсирования процесса энерго разделения и невозможности напрямую использовать одну из температурных фракций многократно для целей увеличения температурного градиента.
Наиболее близким к заявленному техническому решению являются патент RU 2321804, опубликованный 10.04.2008, и патент RU 2407955, опубликованный 27.12.2010 в которых авторы попытались совместить осевой нагнетатель с вихревой трубой. Недостатками данного технического решения является однократность прохождения газа или жидкости через камеру энерго разделения, тем самым получение низкого КПД и не возможность реверсирования теплового потока при изменении направления вращения нагнетателя.
Задачей, на решение которой направлено заявляемое изобретение является создание принципиально нового термопреобразователя путём объединения процессов нагнетания и энерго разделения в один процесс с использованием многократного прохождения одной и той же ступени энерго разделения одним и тем же носителем (газ / жидкость).
Данная задача решается за счет того, что в вихревом реверсивном турбо компрессионном термопреобразователе объединены в одно не делимое целое процесс нагнетания и процесс энерго разделения теплоносителя за счёт использования двух осевых турбокомпрессоров особой конструкции, вращающихся контрроторно друг напротив друга вокруг общей втулки (холодного потока) с использованием многократного прохождения одной и той же ступени энерго разделения одной и той же порцией энергоносителя (газ / жидкость) с возможностью реверсирования нагрев-охлаждение за счёт изменения направления вращения полостей турбо генератора тепла / холода.
Техническим результатом является создание принципиально нового вихревого турбо компрессионного термопреобразователя с большим КПД, в работе которого одновременно участвуют несколько процессов – нагнетание и энерго разделение, благодаря тому, что вихревой компрессионный термопреобразователь содержит два нагнетателя-энерго разделителя каждый с установленными внутри двумя вывернутыми наизнанку осевыми турбинами с полыми втулками по центру, которые вращаются вокруг общей оси в противоположных направлениях и создают друг в друге эффект разделения газа или жидкости. Происходит это благодаря тому, что внутри каждого нагнетателя-энерго разделителя формируются два потока, один в другом, с противоположной круткой и с противоположным направлением движения. На периферии каждой полости образуется закрученный поток с большей температурой, а в центре – закрученный поток с меньшей температурой. По краям двух полостей расположены теплообменники, которые в зависимости от направления вращения нагнетателей-энерго разделителей используются в качестве источника тепла или холода благодаря использованию многократного прохождения одной и той же ступени энерго разделения одним и тем же носителем (газ / жидкость).
Сущность изобретения поясняется чертежами № 16 и 17, на которых представлен вихревой реверсивный турбо компрессионный термопреобразователь.

Рис. № 16. Цилиндрические турбины с полно проходными отверстиями.

Рис. № 17. 3-D вид двух цилиндрических турбин с полно проходными отверстиями.
Вихревой реверсивный турбо компрессионный термопреобразователь включает в себя по две осевые турбины особой конструкции с полыми втулками по центру 3, 6 и 10, 13, которые закреплены в двух нагнетателях-энерго разделителях 5, 11. Нагнетатели-энерго разделители 5, 11 вращаются вокруг общего центрального потока в противоположных направлениях в которых протекает основной процесс энерго разделения в камерах 4,12. По краям стационарно расположены теплообменники 1, 15 с внешними заборниками энергоносителя 1-5, 11-15. Внутри каждого теплообменника расположено спрямляющее воздушный поток устройство. Посредине двух, вращающихся в противоположные направления нагнетателях-энерго разделителях 5, 11 расположен регулируемый дроссель 8 с камерами разделения потоков 7, 9 по обе стороны.
Принцип работы
1. Процесс охлаждения теплообменников 1, 15. (работа в режиме охлаждения)
При включении привода два нагнетателя-энерго разделителя 5,11 с расположенными внутри в каждом по две осевые турбины особой конструкции с полыми втулками по центру 3, 6 и 10, 13, начинают вращаться в противоположные стороны захватывая энергоноситель из полостей теплообменников 2, 14 через внешние заборникамии энергоносителя 1-5, 11-15 . При втекании энергоносителя в полости энерго разделения 4, 12 образуются интенсивные круговые потоки по периферии с противоположной круткой, которые встречаются друг с другом в камерах разделения потоков 7, 9 и вытекают через дроссель 8 в виде горячего потока. В камерах разделения потоков 7, 9 одновременно формируются приосевые обратные круговые потоки, которые направлены противоположно круговым потокам по периферии и имеют противоположную крутку. Благодаря организации такого процесса вращения одного потока внутри другого в противоположных направлениях и с противоположной круткой осуществляется процесс энерго разделения. Источником приосевого обратного потока для камеры энерго разделения 4 является нагнетатель-энергоразделитель 11. И наоборот. Источником приосевого обратного потока для камеры энерго разделения 12 является нагнетатель –энергоразделитель 5. Приосевые обратные потоки заметно охлаждаются в полости энерго разделения 4, 12, отводятся в виде холодного потока в теплообменники 1, 15 где спрямляются (убирается крутка) и тормозятся в полостях 2, 14 , отдавая им тепло. Смешиваются с небольшой частью энергоносителя от внешнего заборника 1-5, 11-15 и весь процесс повторяется снова. Регулируя ширину дросселя 8 и входные площади внешних заборников энергоносителей 1-5, 11-15 изменяем общий уровень давления энергоносителя в системе , тем самым изменяем общее количество холодного потока, который будет многократно использоваться в работе системы.
2. Процесс нагрева теплообменников 1, 15. (Работа в режиме обогрева)
При включении привода два нагнетателя-энерго разделителя 5, 11 с расположенными внутри в каждом по две осевые турбины особой конструкции с полыми втулками по центру 3, 6 и 10, 13, начинают вращаться в противоположные стороны, захватывая энергоноситель из полостей камеры разделения потоков 7,8 через окно 8 и одновременно из противоположных приосевых зон осевых турбин особой конструкции 6, 10. При втекании энергоносителя в полостях энерго разделения 4, 12 образуются интенсивные с повышенной температурой круговые потоки по периферии с противоположной круткой. Благодаря организации такого процесса вращения одного потока внутри другого в противоположных направлениях и с противоположной круткой осуществляется процесс энерго разделения. Источником приосевого обратного потока для камеры энерго разделения 4 является нагнетатель-энергоразделитель 11. И наоборот. Источником приосевого обратного потока для камеры энерго разделения 12 является нагнетатель-энергоразделитель 5. Круговые потоки по периферии с повышенной температурой поступают в теплообменники 1, 15 где спрямляются и тормозятся в полостях 2, 14 , отдавая им тепло.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.