bannerbanner
Гид по промпт-инжинирингу
Гид по промпт-инжинирингу

Полная версия

Гид по промпт-инжинирингу

Язык: Русский
Год издания: 2024
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля

Антон Кивалов, Олеся Порхало, Леонид Потапов

Гид по промпт-инжинирингу

Введение

В эпоху стремительного развития искусственного интеллекта и больших языковых моделей (LLM (Large Language Model)) промпт-инжиниринг становится важным инструментом для достижения точных и релевантных результатов.

Этот гид посвящен основным принципам и методам промпт-инжиниринга, показывая, как его применение может помочь компаниям эффективно решать сложные задачи и достигать поставленных целей.

Мы рассмотрим примеры успешной практики в различных отраслях и поделимся советами по внедрению промпт-инжиниринга в ваш бизнес.

1. Промпт-инжиниринг

ПРОМПТ-ИНЖИНИРИНГ

это дисциплина, фокусирующаяся на создании и оптимизации текстовых подсказок (промптов) для больших языковых моделей (LLM) с целью получения максимально точных, релевантных и креативных результатов, соответствующих задачам пользователя.

Цель промпт-инжиниринга – управлять поведением модели, направляя её на конкретные задачи или требования.


Промпт-инжиниринг может включать в себя следующие шаги:

1. Определение цели: четкая формулировка задачи или цели, которую нужно 8 решить с помощью модели ИИ. Это может быть генерация текста, ответ на вопросы, перевод и другие задачи.

2. Разработка промптов: создание конкретных и ясных промптов, которые описывают, что требуется от модели. Формулировка должна быть точной и понятной, чтобы модель могла правильно интерпретировать запрос.

3. Учет контекста: включение необходимой контекстуальной информации в промпт помогает модели дать более точный и релевантный ответ.

Это может быть дополнительный текст или данные, связанные с основным запросом.

4. Тестирование промптов: проверка различных вариантов промптов для оценки их эффективности. Тестирование позволяет понять, как разные формулировки влияют на ответы модели.

5. Анализ результатов: после тестирования проводится анализ ответов модели на различные промпты. Оценивается точность, релевантность и соответствие ответов заданной цели.

6. Оптимизация промптов: на основе анализа результатов вносятся изменения в промпты. Это может включать уточнение формулировок, добавление или удаление контекста, а также корректировку порядка или структуры информации для улучшения качества ответов.

7. Итеративное улучшение: процесс тестирования и оптимизации продолжается до достижения желаемого уровня качества ответов модели. Итеративный подход позволяет постепенно улучшать результаты и находить наилучшие решения.

8. Документация и стандартизация: успешные промпты и подходы документируются для будущего использования. Разрабатываются стандарты и рекомендации по созданию эффективных промптов, что упрощает процесс их разработки в будущем.

ЧТО ТАКОЕ ПРОМПТ?

Термин «промпт» (Prompt) – это своего рода задание или инструкция для модели искусственного интеллекта (ИИ). Он представляет собой набор входных данных, которые определяют контекст и желаемый результат работы, помогая модели понять, что именно от неё требуется.

ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ ПРОМПТОВ

Использование промптов в работе с языковыми моделями позволяет более точно настраивать и контролировать выходные данные модели, делая её более гибкой и адаптивной к конкретным потребностям пользователя. Промпты могут включать не только текст, но и другие типы данных, такие как изображения или аудио, в зависимости от типа используемой модели.

ВАЖНОСТЬ ПОНИМАНИЯ РАБОТЫ МОДЕЛИ

Важным аспектом промпт-инжиниринга является понимание того, как нейросеть обрабатывает информацию и какие типы запросов она может эффективно обрабатывать. Это помогает оптимизировать формулировку промптов и получать более точные и информативные ответы.

При правильном использовании промптов нейросеть может быть мощным инструментом для решения различных задач, таких как генерация текста, анализ данных, создание контента и многое другое. Промпт инжиниринг позволяет пользователю максимально раскрыть потенциал нейросети и получить качественные результаты в своей деятельности.

2. Области применения промптов

Где промпты меняют правила игры?


Разработка и обучение ИИ:

Обучение языковых моделей – сложный процесс, и ключевую роль в нём играют именно промпты. С их помощью разработчики «обучают» ИИ понимать естественный язык, выполнять инструкции и генерировать разнообразный контент.


Создание интеллектуальных систем:

Работа чат-ботов, голосовых помощников, систем автоматического перевода и других интеллектуальных систем основана на промптах. Чётко сформулированные промпты служат своеобразным языком общения между пользователем и системой, позволяя ей «понимать» запросы и давать релевантные ответы.


Автоматизация рутинных задач:

С помощью промптов можно автоматизировать множество рутинных задач, связанных с обработкой текста. Написание писем, создание презентаций, генерация рекламных объявлений, перевод документов – это лишь небольшой перечень того, с чем помогают справиться промпты.


Решение творческих задач:

Промпты могут быть не только инструментом для решения практических задач, но и источником вдохновения для реализации творческих идей. Генерация изображений, музыки, написание стихов и даже создание сценариев – промпты расширяют границы возможного в творчестве.


ПОТЕНЦИАЛ ПРИМЕНЕНИЯ LLM В РАБОЧИХ ПРОЦЕССАХ:

3. Чат-боты и виртуальные помощники

Как вы уже знаете, промпт-инжиниринг находит применение в самых разных областях: от генерации контента до обучения моделей. Но сегодня мы сфокусируемся на, пожалуй, самом понятном и актуальном примере – чат-ботах.

ЧАТ-БОТЫ И ВИРТУАЛЬНЫЕ ПОМОЩНИКИ:

Чат-боты – это компьютерные программы, с которыми можно взаимодействовать с помощью обычного языка. Они анализируют то, что им написал человек, и отвечают так, как если бы отвечал другой человек.

Эти программы обучаются на огромном количестве текстов из интернета – миллиардах страниц сайтов, книг, статей. Поэтому они хорошо знают язык и могут вести разговор на разные темы.

Главное их умение – это понимать вопросы и инструкции на обычном языке и давать полезные ответы, а не просто поиск информации по ключевым словам. Они используют технологии искусственного интеллекта, чтобы отрабатывать информацию.


Давайте рассмотрим несколько примеров:



4. Как работают чат-боты



Формула демонстрирует ключевые элементы, которые могут входить в состав эффективного промпта для больших языковых моделей (БЯМ):

Роль:

Определение роли, которую должна принять модель при выполнении задачи. Это помогает модели лучше понять контекст и сгенерировать более релевантный ответ.

Пример: «Представь, что ты бизнес-аналитик»

Цель:

Описание желаемого результата или цели, которую необходимо достичь с помощью LLM.

Пример: «Цель: сделать максимально безопасное, надежное и эффективное ПО»

Задача:

Конкретное задание или вопрос, на который нейросеть должна дать ответ или выполнить.

Пример: «Тебе необходимо написать функционально-технические требования к этому проекту в соответствии с ГОСТ Р 58776»

Контекст и детали:

Предоставление дополнительной информации и деталей, которые помогут БЯМ лучше понять задачу и сгенерировать более точный ответ.

Пример: «Ты с командой разрабатываешь ПО для систем управления полетом самолета»

Лимиты:

Ограничения или условия, которые LLM должна учитывать при выполнении задачи. Это может быть ограничение по длине текста, стилю, формату и т. д.

Пример: «Результат оформи в виде списка»


Комбинируя эти элементы, вы можете создавать универсальные промпты, которые помогут вам получить максимально эффективные результаты от LLM.

ХОРОШИЙ ПРОМПТ

«Напиши текст, в котором ты расскажешь о своем опыте разработки программного обеспечения с точки зрения главного разработчика. Опиши его подход к решению проблем, взаимодействию с командой и процессу принятия решений»

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Конец ознакомительного фрагмента
Купить и скачать всю книгу