
Полная версия
Фотографические эксперименты. Нетривиальные техники фотографии
Наиболее интересные инфракрасные пейзажи получаются в ясную, солнечную погоду, когда ярче всего проявляется специфика метода. Съемки в облачную погоду, а также в тени при слабом освещении, в принципе, не исключены, однако требуют длительных выдержек. Стоит учесть, что в инфракрасной фотографии от уровня освещенности зависит цветовая гамма полученных снимков. Настоящее ИК-изображение лишено каких-либо привычных цветов и оттенков. Для него более применимо понятие тона – такое изображение состоит из темных и светлых тонов – соответственно частоте и интенсивности отраженного или испускаемого излучения. Однако электроника камер работает таким образом, что снимки получаются окрашенными в условные цвета. Фотографии 5 и 6 позволяют сравнить гамму условных цветов при съемке на ярком солнце и в тени. Характерно, что использованная для их получения камера мобильного телефона в сочетании с фильтром из пластика от компакт-диска окрашивала ярко освещенное небо на снимках в зеленый цвет, однако этот эффект воспроизводится далеко не на всех устройствах.

5. Инфракрасное небо в условных цветах: камера мобильного телефона, пластиковый светофильтр
Не стоит рассчитывать, что, начав экспериментировать с инфракрасной фотографией, сразу удастся получить снимки выставочного уровня качества. Эта техника сопряжена с большим количеством трудностей. Фильтры из пластика и других подручных материалов отнюдь не способствуют получению резкой картинки. Но даже если вы обзаведетесь профессиональным стеклянным светофильтром, это еще не значит, что все проблемы решены.
Помимо необходимости длинных выдержек и высокого уровня шума, трудностей добавляют оптические артефакты, возникающие при использовании фильтров. Во-первых, это блики, появляющиеся из-за переотражения света от поверхностей оптических элементов, во-вторых, со многими объективами наблюдается специфическое для ИК- фотографии явление, именуемое «горячим пятном» (hot spot), которое представляет собой засветку круговой формы в центре снимка.

6. Инфракрасный снимок в тени: камера мобильного телефона, пластиковый светофильтр
Контрастность полученных ИК-изображений, как правило, оставляет желать лучшего. Такие снимки требуют серьезной цифровой обработки – повышения яркости и контраста, а также шумоподавления. При выборе камеры для данного вида фотосъемки приходится искать баланс между разрешением матрицы и способностью устройства воспринимать ИК-лучи. Остается только посоветовать больше экспериментировать, подбирать проходящее устройство на практике.
Инфракрасную съемку можно проводить и с искусственными источниками освещения – для этого годятся ИК-светодиоды и обычные лампы накаливания, значительную часть своей мощности переводящие не в видимое, а в тепловое излучение. Обзаведясь достаточно яркой (200—500 Вт) лампой, можно проводить опыты с инфракрасной съемкой в помещении. В продаже также имеются мощные инфракрасные лампы, пригодные для фотосъемки в студийных условиях. Однако стоит помнить, что интенсивное излучение инфракрасного диапазона вызывает нагрев облучаемых поверхностей, так что с подобной лампой следует обращаться осторожно – она вполне способна поджечь расположенный близко предмет.
Чем может быть интересна студийная инфракрасная фотосъемка? Можно попробовать сделать портреты с помощью данного метода, однако их результат будет весьма специфичным. Как правило, на ИК-фотоснимках человеческая кожа выглядит белесой, что создает эффект «мраморной скульптуры», при этом может контрастно прорисовываться сосудистый рисунок вен. Пожалуй, более интересный результат можно получить, проводя съемку моделей общим планом на пленэре, в контексте живописных пейзажей.
Вышеприведенный обзор любительских методов можно считать лишь введением в инфракрасную фотографию. При наличии должного энтузиазма и терпения можно достичь хорошего качества инфракрасных снимков, но, даже если не ставить перед собой глобальных целей, простые методы ИК-фотографии способны послужить забавным трюком, позволяющим разнообразить фотографический опыт.
Литература
1. Левитин И. Б. Техника инфракрасных излучений. М.: Госэнергоиздат, 1959, 80 с.
2. Sienkiewicz J. How to Shoot Mind-Bending Infrared Digital Photos with a Modified Camera. 2019 (https://www.shutterbug.com/content/how-shoot-mind-bending-infrared-digital-photos-modified-dslr).
3. Войтехович А. Инфракрасная фотография, съемка и обработка, 2007 (http://funphoto.ua/rus/infrared-photography.php).
4. Катков Д. Инфракрасная фотосъемка без инфракрасного светофильтра, 2005 (http://photo-element.ru/book/pseudo_ir/RVP.html).
5. Сибрук В. Роберт Вильямс Вуд. Современный чародей физической лаборатории. Под ред. С. И. Вавилова. Гос. изд. технико-теоретической литературы, М., Л., 1946, 312 с.
6. Соловьев С. М. Фотографирование в инфракрасных лучах. М., 1957.
7. Williams A. Floppy Photog: Making An IR Filter From A 3.5″ Disk, 2023 (Floppy Photog: Making An IR Filter From A 3.5″ Disk | Hackaday).
Ультрафиолетовая фотография

1. Ультрафиолетовый городской пейзаж: съемка компактной камерой через фильтр из темного стекла
Свойства ультрафиолетовых лучей – объективы и фильтры для ультрафиолетовой фотографии – искусственные источники ультрафиолета – флюоресценция.
Наряду с инфракрасной фотографией значительный интерес для любителей представляет съемка в ультрафиолетовом (УФ) диапазоне, которому соответствуют волны длиной 10—400 нм. Данное излучение проявляет высокую химическую активность, оно ионизирует воздух с образованием озона и оказывает существенное влияние на живые организмы. Солнечный ультрафиолет в значительной мере задерживается озоновым слоем в атмосфере, однако наиболее длинноволновое УФ-излучение (называемое ближним) достигает земли и участвует в природных фотохимических процессах. Фиксация лучей данного спектра может осуществляться при помощи химических фотоматериалов и цифровых матриц, и в идеале такая съемка требует особой оптики. Но даже с помощью обычной фототехники можно получить снимки в ближнем УФ-диапазоне.
Чем меньше длина волны электромагнитного излучения, тем более интенсивное воздействие оно оказывает на материю, что отражается и во влиянии на живые организмы. Ближний ультрафиолет вызывает естественный загар кожи, в умеренных количествах он необходим для синтеза витамина D в организме. Дальний («жесткий») ультрафиолет обладает сильными дезинфицирующими средствами, при этом он весьма вреден для кожи и глаз: вызывает ожоги кожи, фотоконъюнктивит и фотокератит, также может провоцировать хронические заболевания вплоть до рака кожи. Поэтому не стоит лишний раз облучаться под кварцевыми лампами и лабораторными УФ-трансиллюминаторами. Еще одним мощным источником опасного ультрафиолета является дуговой разряд, вспыхивающий в электросварке, поэтому при работе с ней требуется защита глаз. Что же касается рентгеновского и гамма-излучения, их воздействие на живые ткани еще интенсивнее и вредоноснее, поэтому они не входят в сферу любительских опытов.

2. Лес в ультрафиолетовом диапазоне: съемка компактной камерой через фильтр из темного стекла
Однако в фотографии высокая фотохимическая активность ультрафиолета сыграла ключевую роль. Наиболее ранние фотопроцессы (дагеротипия, цианотипия, солевая фотография, пигментная печать на основе хромированных коллоидов и так далее) отличались низкой светочувствительностью и действовали за счет экспозиции на ярком солнечном свете, включающем существенную доля ближнего УФ-излучения. Более того, чувствительность солей серебра к невидимому глазом УФ-излучению была открыта в XIX в., еще до полноценной разработки фотографических техник. Как было отмечено в предыдущей главе, на заре фотографии приходилось сталкиваться с тем, что на снимках хорошо прорабатывались предметы синих и зеленых цветов, но практически не запечатлевались оттенки красного, которым соответствует менее энергетичная часть спектра. Для создания полноценной цветной фотографии понадобилась разработка способов сенсибилизации фотоматериалов ко всем частям видимого диапазона.
Того количества ультрафиолета, что освещает земную поверхность в безоблачную погоду, вполне достаточно для съемки в данном диапазоне при естественном освещении. При этом наблюдаются интересные эффекты – на венчиках некоторых цветов проявляются пятна, невидимые невооруженным глазом. Считается, что они служат «опознавательными знаками» (сигнатурами) для насекомых, которые обладают зрением в ультрафиолетовом диапазоне.
Изображения людей в УФ-спектре также весьма своеобразны: кожа выглядит темной, на ней проявляются невидимые в обычном свете пигментные пятна.
Кроме того, в ультрафиолетовых лучах флюоресцируют (вторично испускают собственное свечение) некоторые минералы, растения и гусеницы насекомых, что также можно использовать для создания интересных фотографий (см. главу «Светографика и люминесценция в фотографии»). Данный эффект используется в криминалистике для поисков следов, незаметных при обычном освещении, а также в медицине и в банковском деле.
Основная проблема фотосъемки в ультрафиолетовом диапазоне заключается в том, что большая часть данного спектра задерживается стеклянной оптикой. Для фотографии в широком УФ-спектре необходимы кварцевые линзы, выпускаемые для специального научного оборудования. В настоящее время такая оптика представлена в некоторых интернет-магазинах – из нее можно сделать простейший объектив-монокль, но рассчитывать на хорошее качество воспроизводимой им картинки не стоит (см. главу «Объектив монокль»).
Однако практика показывает, что даже с помощью обычной оптики можно производить съемку в ближнем ультрафиолетовом диапазоне (ориентировочно – до 320 нм, значения разнятся для различных сортов стекла). При этом диапазон пропускаемого атмосферой ультрафиолета в местности с небольшой высотой начинается как раз примерно с 300 нм, в горах он будет шире, а интенсивность излучения – выше, поэтому так важно защищать глаза и кожу в горных походах.
Стоит также помнить еще об одном методе: создании фотографии без объектива (см. главу «Пинхол»). Хотя в случае использования пинхол-камеры возникает другая проблема: точечное отверстие пропускает слабый поток излучения, для фотографии в УФ-диапазоне, обособленном от видимого спектра, понадобятся очень длинные выдержки либо высокая чувствительность матрицы (или химического фотоматериала).
В целом принцип технической реализации ультрафиолетовой фотографии таков же, как и для инфракрасной – объектив необходимо закрыть фильтром, непроницаемым для видимого света и более низкочастотной части спектра (в данном случае он будет представлять собой малопрозрачное темно-синее или черное стекло). К сожалению, найти фильтр для УФ-фотографии – дело непростое, не в пример ИК-фильтрам, легко изготавливаемым из подручного материала. Рассмотрим доступные способы:
1. Ультрафиолетовые фильтры изредка появляются в продаже – они выпускаются специально для фотоаппаратов либо для лабораторных приборов. При поиске в интернет-магазинах стоит обратить внимание, что необходимы фильтры для УФ-съемки, а не антиультрафиолетовые (выглядящие как прозрачные стекла), которые широко используются для защиты объектива фотокамеры.
2. Можно подобрать фильтр от старой оптической техники, например, стекла УФ-облучателей советского производства (пример снимка через такой фильтр приведен на фото 1 и 2). В лабораторной практике также использовались светофильтры с металлическим покрытием, выделяющие УФ-диапазон (фото 3). В случае использования стекла, отчасти прозрачного для видимых лучей, получатся снимки в смешанном диапазоне.

3. Цветы в ультрафиолете: компактная цифровая камера, светофильтр с металлическим покрытием
3. Если не удастся найти полноценный фильтр для УФ-фотографии, можно попробовать использовать систему из двух поляроидов, затемняющих свет видимого диапазона за счет эффекта перекрестной поляризации. При этом желательно, чтобы один фильтр были линейно поляризующими (с маркировкой LP). Подробнее о принципе действия это системы см. в главе «Перекрестная поляризация». В таком случае можно получить снимки в смешанном диапазоне ближнего ультрафиолета и инфракрасного излучения. Но это далеко не лучший метод, он чреват возникновением оптических артефактов и потерей качества снимков.
Фотосъемку в ближнем УФ-диапазоне интересно проводить на улице в солнечную погоду. На фото 1 приведен типичный пример такого снимка. Характерной особенностью является яркая, насыщенная проработка безоблачного неба и красноватый оттенок листвы. Наибольший интерес представляют фотографии растений в УФ-диапазоне, выявляющем невидимые невооруженным глазом пигментные сигнатуры.
При отсутствии яркого солнечного освещения можно поэкспериментировать с фотографией при искусственной УФ-подсветке. Для дезинфекции помещений в лабораториях и медицинских учреждениях используются кварцевые лампы, создающие жесткое излучение, опасное для глаз и кожи, и озонирующие воздух. Отличительной особенностью таких ламп является прозрачная колба (трубка) с электродами, без люминесцентного покрытия на стенках.
На данный момент кварцевые лампы доступны в продаже, но для опытов с УФ-фотографией не стоит спешить их приобретать. Можно обойтись более безопасными источниками ближнего УФ-излучения. К ним относятся так называемые«лампы черного света, дающие более мягкое излучение, спектр которого находится в длинноволновой части ультрафиолетового диапазона. Принцип работы этих устройств, также называемых «лампами Вуда» (снова в честь небезызвестного физика Роберта Вуда), таков же, как у обычных люминесцентных ламп.
С действием ламп Вуда должны быть не понаслышке знакомы посетители ночных клубов – именно они заставляли «светиться» в темноте белую одежду из некоторых видов тканей (в последнее время вместо таких ламп все чаще применяются светодиодные источники освещения). Также источники ближнего УФ-излучения продаются в зоомагазинах (они используются для подсветки в террариумах с рептилиями во избежание развития рахита у питомцев) и среди косметологического оборудования (под УФ-излучением застывают используемые для маникюра полимеры).
Есть еще один вариант технической реализации «мягких» источников ультрафиолета – люминесцентные лампы с белыми матовыми колбами или трубками. Энтомологи используют такие устройства для привлечения насекомых, обладающих ультрафиолетовым зрением. Работая с люминесцентными УФ-лампами, не забывайте, что они могут содержать ртуть, которая вытечет, если колба разобьется.
В любом случае, выбирая лампу для фотографических опытов, стоит обращать внимание на диапазон ее излучения. Для большинства задач достаточно ближней части УФ-спектра – до 260—300 нм. Такая лампа может пригодиться и для реализации альтернативных химических фотопроцессов.
Еще один вариант источника освещения – ультрафиолетовые светодиоды. Их удобно использовать для фотоэкспериментов, учитывая, что они дают маломощное излучение ближнего УФ-диапазона. Из них можно сделать матричный осветитель. Другой вариант – приобретение готового фонаря на основе УФ-светодиодов – подобные устройства имеются в продаже в интернет-магазинах и довольно удобны в использовании (но обращаться с ними следует также осторожно, нельзя светить ими в глаза и лучше подальше прятать их от детей). При работе с любыми ультрафиолетовыми источниками следует защищать глаза очками, лучше – специально разработанными для этой цели (таковые имеются в продаже в магазинах спецодежды и снаряжения).
Из цифровых камер для ультрафиолетовой фотографии подходит широкий перечень устройств. Разумеется, любой фотоаппарат со стеклянной оптикой будет иметь существенно ограниченные возможности съемки в УФ-диапазоне, но, если довольствоваться ближним спектром ультрафиолета, съемку с одинаковым успехом можно вести на мобильные устройства, компактные и зеркальные камеры. Главное, чтобы фильтр удалось плотно присоединить к объективу во избежание помех в виде переотражений. И не забудьте при этом снять защитный антиУФ-фильтр, если таковой имеется.
Помимо цифровых камер, ультрафиолетовые снимки можно делать с помощью фотопленки и фотобумаги (хотя не все марки пленки фабричного производства одинаково подходят для этих целей). Но как уже было сказано, многие химические фотоматериалы к ультрафиолетовой части спектра даже чувствительнее, чем к видимой.
Обзаведясь компактным источником УФ-света, можно проделать несколько занятных экспериментов с флюоресценцией. Попробуйте в темноте осветить им стены и мебель. Как бы вы ни старались содержать свою квартиру в чистоте, наверняка ультрафиолетовое излучение выявит люминесцирующие разводы от различной органики (в особенности на кухне). Под УФ-лучами должны светиться защитные знаки на банкнотах. В плане художественной фотографии интерес представляет собой флуоресценция некоторых растений, участков листьев и коры, пораженных фитопатогенами вроде мучнистой росы, а также личинки-гусеницы, куколки и взрослые особи насекомых. Кроме того, стоит упомянуть использование люминесцентных красок для рисования и создания художественного грима (см. главу «Светографика и люминесценция в фотографии») – они будут интенсивно светиться в лучах ультрафиолетового (или даже видимого синего) источника освещения, подобные спецэффекты широко используются в фотографии и видеосъемке.
Литература
1. Катков Д. Мир глазами пчелы, или секреты ультрафиолетовой фотосъемки, 2005 (http://photo-element.ru/book/uv/uv.html).
2. Катков Д. Цифровая съемка в комбинированном УФ/ИК диапазоне без специального светофильтра, 2005 (http://photo-element.ru/book/pseudo_ir/2polars/2polars.html).
3. Сибрук В. Роберт Вильямс Вуд. Современный чародей физической лаборатории. Под ред. С. И. Вавилова. Гос. изд. технико-теоретической литературы, М., Л., 1946, 312 с.
Теневая визуализация

1. Теневая проекция на стене
Силуэтная фотография – визуализация жидкостей и газов – иммерсионная контактная фотография – шлирен-фотография.
Тени предметов, воспроизводящие их силуэты, всегда представляли интерес для изобразительного искусства. Художественное своеобразие теневых фигур было оценено по достоинству еще в XVIII в., когда получили широкое распространение силуэтные портреты, называемые также «китайскими тенями». Затем этот прием успешно перекочевал в фотографию.
Для создания силуэтной фотографии можно поставить модель или фотографируемый предмет напротив ярко освещенного равномерного фона (фото 1, 2). В таком случае объект съемки находится между фотоаппаратом и поверхностью, на которую отбрасывается тень.
Другой прием – расположение фотоаппарата за экраном, на который проецируются тени: таковым могут послужить шторы или листы бумаги.
Сколь интересным ни представлялся бы подобный «театр теней», особенно занятно выглядят тени предметов, невооруженным глазом кажущихся прозрачными или полупрозрачными. Возможность получения теневых изображений прозрачных субстанций, в том числе – жидкостей и газов, была обнаружена еще в древние времена. Легко заметить, что дым или пар, незаметный невооруженным глазом, при ярком освещении дает отчетливый рисунок тени на светлой стене. Таким образом можно рассмотреть неоднородности в потоках горячего воздуха, поднимающегося от пламени. Можете попробовать сфотографировать отбрасываемую в ярких солнечных лучах тень огня свечи или спиртовки либо пара над сосудом с горячей водой.

2. Теневая проекция на бумаге
То же касается и воды либо другой жидкости, налитой в прозрачный сосуд – если выставить его на яркое солнце, в отбрасываемой на дно тени будут хорошо видны возмущения на поверхности. Можно провести простой эксперимент в ванной: наберите горячей воды, затем переключите на холодную и вливайте ее душем, погруженным под воду. При ярком освещении вы увидите на дне ванной визуализацию конвекционных потоков смешивающейся холодной и горячей воды (похожую картину дают потоки горячего воздуха вокруг пламени и нагревательных приборов). Возмущения поверхности жидкости также дают отчетливую теневую картину – таким образом можно запечатлеть круги, расходящиеся по поверхности жидкости от падающих в нее капель.
Более того, само стекло, из которого изготавливаются сосуды, также оптически неоднородно. Тени, производимые такими предметами, выглядят весьма фактурно. Для получения интересных снимков попробуйте поставить на белый лист бумаги под яркое солнечное освещение различные стеклянные и пластиковые сосуды, в которые налита жидкость. В результате могут получиться абстрактные снимки вроде тех, что приведены на фото 2 и 3.
Во многом теневая фотография сближается с фотограммами – обособленным направлением в фотографическом искусстве (см. главу «Фотограммы»). По сути, фотограмма и является изображением тени предмета, запечатленного без использования фотоаппарата, контактным способом прямо на светочувствительных материалах. Похожие изображения можно получать и с помощью цифровой техники, проецируя тени от предметов на светлый экран – это будет имитацией фотограмм.
Существует еще одна разновидность теневой визуализации, нашедшая применение в науке – так называемая иммерсионная контактная фотография. Суть ее заключается в следующем: на фотобумагу или фотопленку, предназначенную для экспонирования, ставится прозрачная кювета, наполненная иммерсионной средой – прозрачной жидкостью, имеющей необходимый показатель преломления (например, монобромнафталином), в нее погружаются фотографируемые предметы. Это могут быть прозрачные в обычных условиях кристаллы. При нахождении в особой среде их просвечивание дает отчетливую теневую картинку, запечатлеваемую на фотобумаге, причем ее характер зависит от показателя преломления, свойственного кристаллу. Таким образом, можно детально изучить структуру кристаллов, плохо различимую невооруженным глазом, а также определять их показатель преломления, который является специфичным для каждой разновидности минерала.
Использование иммерсионной контактной фотографии позволяет определять подделки драгоценных камней, выявлять их дефекты, отличать естественные и искусственно выращенные кристаллы и точнее диагностировать типы минералов. Но даже если перед вами не стоит подобных задач, можно использовать подобную методику для фотоэкспериментов: наливать в широкий сосуд различные жидкости, погружать в них интересующие вас предметы, в том числе – прозрачные для невооруженного глаза изделия из стекла, пластика и так далее.
Те, кто не желает связываться с аналоговой химической фотографией, могут адаптировать эту методику для цифровой фотосъемки по аналогии с получением цифровых имитаций фотограмм. Для этого следует просвечиваемую композицию в кювете расположить на прозрачном столе, подстелив под нее лист белой бумаги – на нем отобразится светотеневой рисунок, который можно фотографировать цифровой камерой, расположив ее под столом.
Можно предложить еще одно интересное применение теневой визуализации для любителей экспериментировать с выращиванием кристаллов. Если раствор какого-либо кристаллического вещества (например, медного купороса, лимонной кислоты, алюмокалиевых квасцов и других) с добавлением желатина или гуммиарабика нанести на стекло и дать ему высохнуть, получится кристаллическая «картина» с затейливыми узорами. Однако из-за полупрозрачности и слабой окрашенности кристаллов в тонком слое для невооруженного глаза такие изображения выглядят не особо впечатляюще. Одним из методов повышения контрастности кристаллических узоров является использование эффекта перекрестной поляризации (см. главу «Перекрестная поляризация»). Однако можно поступить проще – приложить стекло с кристаллическим узором к белому листу бумаги (именно той стороной, на которой находится кристаллическое вещество, если вы хотите достичь наибольшей четкости картинки) и поместить перед ярким источником света. На просвет вы увидите теневую картинку кристаллических структур, которую можно сфотографировать любым способом.