Полная версия
Метафизика опыта. Книга II. Позитивная наука
Ибо если алгебра обобщает числа или величины арифметики так, как мы только что видели, то она неизбежно приводит к обобщению, или, скорее, расширению применения своих процессов, аналогичным образом. Так, например, он делает, когда использует скобки или vincula для обозначения того, что сложная величина, которую он мог создать для себя из условий какой-либо задачи и значение которой он оставил численно неопределенным, должна рассматриваться как составная, хотя и единая величина; то есть величина, при алгебраическом решении которой, до решения уравнения, в котором она стоит, должен быть учтен каждый отдельный компонент. Например, в выражении (a + b) 2 заключение a + b в скобки со знаком возведения во вторую (или квадратную) степень указывает на то, что каждый из его компонентов, взятый отдельно, должен быть умножен один раз на себя и один раз на другой компонент; таким образом, мы получаем эквивалентность,
(a + b) 2 = a2 +2ab + b2, что облегчает устранение одного или нескольких коэффициентов с помощью их уравновешивающих эквивалентов на противоположной стороне уравнения.
И снова обычные процессы арифметики обобщаются в алгебре, используя (1) знаки «+» и «-» как знаки процессов, способствующих некоторому конечному результату, независимо от того, существуют ли реальные величины, которые нужно сложить в одном случае, или из которых можно вычесть в другом, и (2) используя знаки «x» и «÷», знаки умножения и деления, таким же образом. Кроме того, изложены правила использования обеих пар знаков, сначала + и -, а затем x и ÷, в применении к + и – величинам. Последние правила вкратце гласят, что + величины, умноженные или деленные на + величины, и – величины, умноженные или деленные на – величины, одинаково дают + величины; и что + величины, умноженные или деленные на – величины (или наоборот), одинаково дают – величины. Причина этих последних правил станет очевидной, если мы рассмотрим необходимость при вычислениях с помощью переменных и неопределенных величин оставлять неопределенными результаты процессов, обозначаемых этими и подобными знаками (например, для потенцирования и ротоэкстракции), пока они не будут рассматриваться как части, которые вместе составляют все данные вычисления. Ибо эта необходимость ведет непосредственно к тому, что является, возможно, самым фундаментальным обобщением во всей алгебре, которое подразумевается во всех ее процессах и в форме, которую принимают все ее суждения, а именно к форме уравнения. Я имею в виду общую концепцию отрицательных величин, то есть величин, которые меньше, чем ничто, и именно настолько меньше, чем ничто, насколько выше фигуры, которые их выражают. Символ 0, или ноль, мыслится как стоящий посередине между двумя бесконечно большими классами чисел, один из которых содержит все положительные числа, или числа больше нуля, выраженные цифрой 4-, а другой – все отрицательные числа, или числа меньше нуля, выраженные цифрой – И к тому или другому из этих противоположных классов должно принадлежать каждое количество, отличное от нуля. Таким образом, в одном смысле нулевое значение 0, стоящее между положительными величинами с одной стороны и отрицательными с другой, занимает положение, аналогичное и подразумеваемое тем, которое занимает знак равенства = между любыми двумя величинами, отличными от 0, независимо от их места в этих классах; так как такие величины равны только тогда, когда при вычитании одной из них из другой получается 0, то есть когда между ними нет количественной разницы.
Теперь правила знаков, указанные выше для умножения и деления алгебраических величин, а именно, что подобные знаки дают +, а непохожие – -, можно рассматривать как правила, влияющие на них просто как на операции, определяющие, принадлежат ли их результаты (которые являются произведениями в одном случае, кванторами в другом) к положительному классу чисел, записанных справа, или к отрицательному классу чисел, записанных слева, от 0. Я имею в виду, что сами величины имеют знаки + или – до того, как мы их умножим или разделим, и что эти знаки должны быть отличны от тех, которые будут иметь их результаты, когда эти операции будут выполнены. Знаки этих результатов мы и хотим узнать, не выполняя операций, на которые они направлены, чтобы составить уравнения, из которых только и можно узнать числовое значение самих результатов. Вопрос заключается в том, какие знаки должны иметь величины, подлежащие умножению или делению одна на другую, до выполнения этих операций, чтобы результаты этих операций над ними были отнесены соответственно либо к положительным, либо к отрицательным величинам.
Сначала об умножении. В операции умножения одного количества + на другое количество + мы делаем следующее: считаем множимое столько раз, сколько единиц имеет множитель. Если оба количества положительны, то результат операции может быть только положительным.
Если же множимое или множитель отрицательны, то при положительном значении другой величины операция с ее результатом будет отрицательной. Ибо предположим, что множитель отрицательный, скажем -6, а множитель положительный, скажем +3. Тогда знак множителя является знаком операции, то есть мы имеем положительный счет от – 6 три раза. Ничто не меняет знак числа 6. Следовательно, результат получается отрицательным, -18. Во-вторых, предположим, что множитель отрицательный, и нам нужно, скажем, умножить +6 на – 3. Операция здесь отрицательная, это операция счета. Но что значит посчитать 6 раз на – 3? Рассмотрим это следующим образом. Если бы мы посчитали 6 один раз, то есть умножили на 1, то в результате получилось бы 6. Если бы мы сказали, что не считаем 6, то есть умножили бы его на 0, результат был бы 0. Если бы мы считали его один раз реже, чем 0, мы должны были бы умножить его на – 1, и результат был бы -6. Аналогично умножить его на – 3 – значит предположить, что его считают в 3 раза реже, чем 0, то есть сделать t-18.
Таким образом, в обоих случаях умножения величин с непохожими знаками результат имеет отрицательный знак или -.
И наконец, предположим, что мы умножаем два отрицательных или – количества, знаки которых одинаковы, но отрицательны. Это означает, что мы должны либо считать, скажем, – 6 за – 3 раза, либо – 3 за – 6 раз. Мы только что видели, что значит считать по – раз. В данном случае нам остается только повторить те же рассуждения; и здесь не имеет значения, какой фактор берется в качестве множителя, а какой – в качестве множимого. Скажем, нам нужно умножить – 6 на – 3, или сосчитать – 6 за – 3 раза. Теперь не считать – 6 вообще, то есть умножить его на 0, значит довести его до 0, от того, что он на 6 меньше 0; мы просто, как бы, уничтожаем долг. Считать его за – 1 раз – значит довести его до +6; за – 2 раза – до +12; за – 3 раза – до +18. Следовательно, результат, полученный при умножении двух отрицательных или – количеств, имеет знак +, как и при умножении двух 4- количеств.
Что касается деления, то здесь действует то же правило. Результат будет положительным, если знаки делимого и делителя совпадают, и отрицательным, если они не совпадают. Делитель здесь является действующим элементом, как и множитель при умножении, с той лишь разницей, что если множитель выражает, сколько раз нужно сосчитать количество, то делитель выражает, на сколько равных частей нужно разделить количество, или, что то же самое, сколько раз нужно сосчитать одну из этих частей, чтобы привести ее к равенству с целым. Делимое на делитель дает делитель; и наоборот, делимое, умноженное на делитель, дает делитель.
Здесь, во-первых, очевидно, что процесс деления количества + на количество + никогда не может дать ничего, кроме количества +, независимо от того, что мы берем в качестве делителя.
Во-вторых, если предположить, что делимое – величина, а делитель – величина +, то делитель должен быть величиной -, чтобы при умножении на делитель он, в соответствии с правилом умножения, был равен делимому.
Аналогично, если предположить, что делимое – это + количество, а делитель – количество, то и в этом случае делитель должен быть – количеством, чтобы, согласно тому же правилу умножения, он был равен делимому, когда умножается на делитель.
Таким образом, в обоих этих случаях два количества с разными знаками, разделенные одно на другое, дают в качестве своих коэффициентов количества -.
Наконец, если мы делим -количество на -количество, в зависимости от того, что мы берем в качестве делителя, то и здесь, как в случае с +количеством, делитель должен быть 4-количеством, чтобы, по тому же правилу умножения, при умножении на -делитель он был равен -делителю.
Все это, я полагаю, не более чем явное подчеркивание того, что имеется в виду, когда в оправдание правила знака при алгебраическом делении коротко говорят: «Это правило следует из того, что произведение делимого и делителя должно быть равно делителю».13
Обоснование правила знака при умножении – действительно важный момент.
Именно в силу необходимой гармонии с этим высшим обобщением отрицательных величин та форма высказывания, которую алгебра выбирает в качестве той, в которую она переводит все общие результаты, из которых можно вывести решение конкретных случаев, а также все выкладки, которые к ним приводят, – я имею в виду форму уравнения, – сама является высшим примером обобщения процессов, или операций с числами или величинами. Демонстрация равенств является суммой и содержанием всех точных измерений. В конкретном объекте вычислений, которым является число или количество, утверждение равенства, выражением которого является знак =, занимает место копулы в утвердительных суждениях логического мышления в целом. Оно говорит гораздо больше, чем простая копула is, а именно то, что два числа или количества, между которыми оно стоит или которые оно уравнивает, являются в количественном отношении конвертируемыми. Отсюда следует, что уравнение – это логически обратимое суждение, или два простых логических суждения, A есть B и B есть A, в одном; это стало возможным благодаря ограничению предмета уравнения только количеством или числом. Отрицание равенства, если таковое имеется между рассматриваемыми величинами или числами, затем отбрасывается, не как в просто отрицательных логических суждениях, в копулу is-not, как в A не B, а в один или оба термина уравнения, как в
a + x = b, где x обозначает разницу, какой бы она ни была, между b и a; это уравнение можно также выразить как x = b – a, или снова как a – b + x = 0.
Алгебра, таким образом, может быть названа, по аналогии, логикой чистого числа или количества, причем знак = принимается в качестве копулы всех ее суждений или выкладок.
Переходя от уравнений как общих формул к их интерпретации в конкретных случаях, я взял следующее из примеров «замены цифр буквами», приведенных в статье «Алгебра» в Британской энциклопедии; отчасти потому, что оно показывает, как в алгебре используются символы, обозначающие ничто, 0, называемый нулем, и бесконечность, co, :
«Если a = ½, b = ⅓, c = ¼, x = 0, то найдите значение
a2 – b2/x – b2 – c2/x2
Первый член бесконечен, а второй бесконечно больше первого, так как x2 = x * x. Ответ: -∞».14
Нуль, или 0, и бесконечность, или ∞, используются здесь точно так же, как если бы они были реальными величинами. Логическое обоснование этого, как я полагаю, двояко: (1) в вычислениях мы всегда, по предположению, имеем дело с количеством или числом, и никогда – с чем-то, что не является количеством или не числом, и (2) место, в котором или точка, в которой появляется количество или число, в вычислительных операциях всегда определяет его значение. Теперь ноль, или 0, – это место или точка посередине между положительными, или +, и отрицательными, или -, величинами. Как алгебраическая величина он больше любого минуса или отрицательного значения. Аналогично с бесконечными величинами, или ∞. Одна из них может быть больше или меньше другой, в зависимости от места, которое они соответственно занимают в вычислениях, с помощью которых к ним приходят. Обоснованность этого утверждения основывается на двойном характере, отмеченном выше, как присущем всем числам, (1) как акту счета, (2) как единице или группе единиц, которые подсчитываются. Ноль, как подсчитанное количество, означает отсутствие числового содержания в определенном месте, полученном при вычислении, то есть в серии актов счета, как, например, при вычитании (скажем) 9 из 9; бесконечность, как подсчитанное количество, положительное или отрицательное, означает наличие числового содержания, превышающего любое поддающееся определению содержание, в определенном месте, полученном аналогичным образом, как, например, при умножении 0 на 0 (x на x) в приведенном выше примере.
Поэтому нуль в числе и нуль количества в континуумах, одинаково обозначаемые 0, следует тщательно отличать от логического отрицания или противоречия числа или количества, как способов восприятия вообще. Реальное существование чисел или величин в смысле мест или точек в серии актов счета и, следовательно, их возможное существование в виде содержания, находящегося в этих местах или на них, обеспечивается самим актом счета или вычисления, поскольку он неотделим от него. Точно так же алгебраическую концепцию бесконечности, или оо, как способной к степеням сверх степеней, к которой приходят путем вычисления, следует тщательно отличать от той бесконечности, которая относится к определенным способам количества (хотя и не к числу) как способам восприятия вообще; я имею в виду время и пространство, поскольку они являются сущностями восприятия.
Способны ли такие алгебраические значения бесконечности быть интерпретированы как применимые к реальному миру – это другой вопрос. То обобщение арифметических процессов, которое мы называем алгеброй, несет в себе, просто как обобщение, обязанность увидеть, применимы ли и каким образом его результаты к перцептивным явлениям. Сами по себе они не являются гарантией перцептивной реальности, в той же мере, что и представления о гиппогрифах или химерах в обычном логическом мышлении. И это верно даже тогда, когда явления, которые они интерпретируют, имеют такой абстрактный вид, как деления чистого времени и длительности или геометрические конфигурации чистого или пустого пространства. Их следует рассматривать как объекты-вещи, в которых понятия чисто алгебраического исчисления могут находить или не находить образцы. В этом отношении обобщенные понятия и процессы алгебры отличаются от понятий и процессов арифметики, развитием которой они являются. Ибо, снова цитируя статью об алгебре в Британской энциклопедии, «все операции арифметики могут быть непосредственно интерпретированы сами по себе, в то время как операции алгебры во многих случаях могут быть интерпретированы только путем сравнения с предположениями, на которых они основаны». (Vol. I., p. 511.) " Теория уравнений», – читаем мы в той же статье, – «может быть названа собственно алгеброй» (стр. 515). Но поскольку работа с неизвестными и переменными величинами и отношениями величин (выраженными с помощью символов) является общей и существенной чертой в методах всех высших отраслей вычислений, все они в совершенно определенном смысле могут быть названы высшими отраслями алгебры и включены в нее. Я беру общие главы, под которые попадают эти ветви, из статьи об анализе в Chambers’ Encyclo- ptedia: «Математический анализ, в современном понимании этого термина, – это метод рассмотрения всех величин как неизвестных чисел и представления их для этой цели символами, например буквами, причем отношения, существующие между ними, могут быть таким образом установлены и подвергнуты дальнейшему исследованию. Таким образом, это то же самое, что и алгебра в самом широком смысле этого слова, хотя термин «алгебра» более строго ограничен тем, что относится к уравнениям, и, таким образом, обозначает только первую часть анализа. Вторая часть анализа, или анализ, называемый более строго, делится на анализ конечных величин и анализ бесконечных величин. К первому, называемому также теорией функций, относятся такие предметы, как ряды, логарифмы, кривые и т. д. Анализ бесконечных величин включает в себя дифференциальное исчисление, интегральное исчисление и вариационное исчисление».15
Теория уравнений, теория функций и анализ бесконечно малых, таким образом, являются основными главами, под которыми могут быть распределены все ветви, низшие и высшие, алгебры в широком смысле этого слова. Я процитировал вышеприведенный отрывок лишь для того, чтобы дать краткий обзор областей, охватываемых наукой исчисления в целом. Было бы совершенно нецелесообразно пытаться перечислить или каким-либо образом приступить к рассмотрению различных разделов и подразделов, содержащихся в нем. Тем не менее, прежде чем оставить эту тему, необходимо сказать несколько слов об анализе бесконечно малых или бесконечно малом исчислении, поскольку концепция пределов, на которой оно основано, проливает свет на изначальную и существенную природу числа, из которой оно, по сути, является непосредственным и необходимым следствием.
Инфинитезимальное исчисление имеет дело с величинами, которые являются функциями одна от другой, то есть с величинами, которые так связаны между собой, что изменение одной из них влечет за собой соответствующее изменение в другой. Ее цель состоит в том, чтобы, вводя сначала в одну, затем в другую переменную величину, связанную таким образом, которые входят в постановку любой данной проблемы, произвести ряд изменений, которые, поскольку они могут быть сделаны бесконечно малыми, и, следовательно, бесконечно многочисленными, будут нести с собой соответствующие изменения в других, или зависимых, переменных, достаточные для того, чтобы охватить и, в мыслях, учесть все содержание любого мыслимого периода времени или конфигурации пространства, включая все возможные относительные изменения в их частях. При таком методе получаются результаты, которые при последующем применении к явлениям природы адекватно выражают и даже предвосхищают путем вычислений любые отношения или изменения отношений, которые могут существовать или происходить в физическом мире материи и силы, – массы, объемы, движения, скорости, степени интенсивности, энергии и так далее, – словом, все, что угодно, насколько это может быть подведено под понятие количества, то есть насколько это связано с временными и пространственными отношениями.
С изменениями качества физических веществ или сил, как, например, с химическими сочетаниями и сродствами, исчисление имеет дело лишь постольку, поскольку можно показать, что возникновение таких качественных изменений зависит от изменений, которые выражаются в терминах временных и пространственных отношений и поэтому могут быть определены количественно. Калькуляция может быть вкратце описана как Органон для охвата всего поля чисто количественных отношений явлений, так же как Логика Аристотеля является Органоном для охвата всего поля явлений, которые являются случаями различия между Тождеством и Различием, то есть всех явлений вообще.
Теперь факт опыта, который используется в качестве средства и принципа метода для установления и работы этого Органона количества, есть не что иное, как тот, который, как мы видели, действует при возникновении числа и исчисления как таковых. Я имею в виду разделение временного континуума актом целенаправленного внимания, идеальное разделение, которое не занимает никакой части того континуума, в который оно внедряется. Разница лишь в том, что в случае исчисления деление производится на континуумы любого вида и с полным сознанием двух существенных обстоятельств: (1) что делимый континуум является предпосылкой идеального деления его, и (2) что идеальное деление не занимает никакой части этого континуума, но всегда оставляет меньший континуум, способный к еще большему идеальному делению, как бы часто ни повторялся процесс деления. Быть континуумом и быть способным к идеальному делению – это одно и то же.
Пределы, установленные бесконечно малым исчислением (в его дифференциальной ветви) при работе с переменными функциями для целей своих вычислений, являются делениями такого рода. Недавний авторитет дал им следующее определение. «Если существует фиксированная величина, которой переменная величина может быть почти равна, и если невозможно, чтобы переменная величина когда-либо была точно равна этой фиксированной величине, то фиксированная величина называется пределом переменной величины».16
Возьмем элементарный и знакомый пример. Представьте себе круг с горизонтально проведенным диаметром, пересекающийся с окружностью справа в точке, которую мы назовем О. Затем проведите через точку 0 другую прямую линию, отсекающую часть или дугу правого верхнего квадранта круга, и назовите точку, в которой она снова пересекается с окружностью, В. Далее представьте, что эта линия 0 B вращается вокруг точки 0 как шарнира в плоскости круга слева направо, постепенно приближая точку B к точке 0; тем самым постепенно уменьшая (1) дугу перехваченной окружности, (2) длину прямой или хорды 0 B и (3) площадь, заключенную между дугой и хордой, пока эти три величины одновременно не исчезнут; что и произойдет в тот момент, когда точка B достигнет точного совпадения с точкой 0.
До этого момента линия O B является секущей окружности; в этот момент она перестает быть секущей и становится касательной к окружности; а если мы предположим, что она продолжает вращаться слева направо вокруг точки 0, то она перестает быть касательной и снова становится секущей окружности, только на этот раз часть окружности или дуги, которую она пересекает, лежит ниже диаметра и принадлежит нижнему правому квадранту окружности.
Положение прямой 0 B в тот момент, когда она становится касательной к окружности, и до тех пор, пока она ею остается, является пределом последовательного изменения положения, которое она занимала, будучи секущей окружности. И хотя в качестве секущей ее можно сколь угодно приблизить к ее положению касательной; то есть хотя ее расстояние от положения касательной может быть уменьшено последовательными дифференцированиями, пока мы не устанем находить выражения для ее миниатюрности, – все же она никогда не может совпасть с этим положением касательной, не переставая быть секущей; или, выражаясь другими словами, угол, который она как секущая образует с диаметром в точке 0, никогда не может быть точно равен углу, образуемому касательной в этой точке (что является прямым углом), без того, чтобы линия в то же время не перестала пересекать какую-либо часть дуги или окружности, какой бы незначительной эта часть ни была.
Единственная и достаточная конечная причина этого заключается в том, что последовательные положения, которые, как мы полагаем, занимает вращающаяся линия 0 B, являются идеальными делениями пространственных континуумов, а именно: области, заключенной в круге, и области или пространства вне круга, непрерывного с пространством внутри него, за исключением идеального деления, вносимого самим кругом. Ибо идеальные деления континуума не являются решениями его непрерывности, то есть не вносят в него разрывов или интервалов, которые не принадлежат
континууму, как это сделали бы физические деления материального континуума. Отсюда следует, что, пересекая континуум или предполагая движение точки, пересекающей его (будь то континуум времени, или длины, или ширины, или объема пространства), это движение также непрерывно в отношении пересекаемого континуума; то есть оно не может пропустить или оставить не пройденной ни одну часть, сколь бы малой она ни была или могла бы быть идеально разделена, то есть независимо от того, были ли эти идеальные деления явно отмечены или нет. Что касается непрерывности движения по континууму, то нет разницы, сколько или сколько идеальных делений в него внесено, поскольку никакое количество таких делений не может исчерпать его делимость, но всегда должен оставаться континуум, способный к дальнейшему идеальному делению. Короче говоря, непрерывное движение может пересечь весь континуум и в этом смысле исчерпать его, а идеальное деление – нет. Я не ставлю перед собой задачу рассматривать способы, с помощью которых фундаментальная концепция пределов становится основой методов, сначала дифференциального исчисления, а затем интегрального, которое является его противоположностью, дополнением и применением. Здесь нас интересует природа и обоснованность самого Lex Continui, из которого концепция пределов является прямым и непосредственным следствием. В связи с этим необходимо прежде всего отметить, что представление континуума, будь то время, пространство или движение, является представлением фактов чувственного восприятия, взятых в их низших и простейших проявлениях, и поэтому имеет прямую гарантию опыта. Возражения против его конечной эмпирической достоверности должны, с другой стороны, выводиться не непосредственно из данных чувственного восприятия, а из представлений, которые мыслимые рамки времени, пространства и движения, рассматриваемых по отдельности как абстрактные объекты, то есть из понятий о них, или из времени, пространства и движения как понятий. Ибо только в этом случае можно даже поставить вопрос о том, не может ли время в действительности быть последовательностью дискретных мгновений, пространство – сосуществованием дискретных точек, а движение – последовательностью скачков из одной сосуществующей точки пространства в другую, причем каждый скачок совершается в дискретное мгновение времени. Ни к чему, кроме путаницы, не приводило и не может привести такое выдвижение понятий на место восприятий в качестве конечного источника и проверки достоверности. Примером тому служат элеатские загадки о движении.