bannerbanner
Эволюция Бога. Шокирующая гипотеза возникновения органической жизни
Эволюция Бога. Шокирующая гипотеза возникновения органической жизни

Полная версия

Эволюция Бога. Шокирующая гипотеза возникновения органической жизни

Язык: Русский
Год издания: 2024
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 4

Что бы вообразить это число для сравнения можно взять все в видимой Вселенной частицы, все до последней, включая фотоны и нейтрино, то общее число частиц в наблюдаемой вселенной может варьироваться от 10^80 до 10^97, в зависимости от предположений и интерпретаций.

Фред Хойл и Чандра Викрамасинхе считают случайное происхождение любой отдельной молекулы белка совершенно невероятным. Если мы имеем двадцать различных аминокислот и хотим создать белковую цепочку из ста аминокислот, то количество возможных сочетаний будет огромно. Если перебирать их со скоростью один миллиард в секунду, то для того, чтобы исчерпать все сочетания, потребовалось бы время, во много раз превосходящее продолжительность истории вселенной или сотни миллиардов лет. Однако многие ученые считают этот довод не вполне убедителным, поскольку существуют особые силы притяжения, из-за которых различные сочетания аминокислот обладают разной степенью вероятности и устойчивости.

Столько вариативней вероятности существует только для одного белка! Для выживания и репликации клетка должна иметь гораздо больше. Только для репликации ДНК должен присутствовать и работать ряд ферментов, а рядом должны присутствовать необходимые вещества для построения новой молекулы. Другими словами органическая жизнь нисколько непохожа на случайную лотерею, она похожа скорее на какое-то хитроумное мошенническое казино, где казино всегда выигрывает.

Минимальное количество ферментов, которое должно присутствовать в самом примитивном одноклеточном организме, чтобы он функционировал, – непростой вопрос. Однако один из возможных способов подойти к этому вопросу – взглянуть на наименьшие известные геномы живых организмов и сделать вывод о количестве ферментов, которые они кодируют.

Одним из таких организмов является Mycoplasmagentium, паразитическая бактерия, поражающая половые и дыхательные пути человека. Размер его генома составляет всего 580 076 пар оснований, что составляет около 0,02% человеческого генома. Согласно исследованию ученых Университета Северной Каролины, эта бактерия имеет 470 генов, кодирующих белки, из которых 265 необходимы для ее выживания и размножения в лаборатории.

Следовательно, чтобы оценить количество ферментов в M. Genitalium, мы можем использовать базу данных классификаций ферментов, например номера Комиссии по ферментам (EC). Согласно этой базе данных у этой бактерии имеется как минимум 97 различных типов ферментов.

Другой способ оценить количество ферментов – использовать базу данных метаболических путей, например Киотскую энциклопедию генов и геномов (KEGG). Согласно этой базе данных, в метаболических путях M.genitalium участвуют 89 ферментов, которые охватывают основные процессы гликолиза, пентозофосфатный путь, метаболизм пирувата, цитратный цикл, окислительное фосфорилирование, биосинтез аминокислот, биосинтез нуклеотидов и биосинтез липидов.. Однако сюда могут не входить все ферменты, участвующие в других функциях, таких как репарация ДНК, реакция на стресс и взаимодействие с хозяином этого паразита.

Таким образом, на основе этих двух методов мы можем заключить, что минимальное количество ферментов, которое должно присутствовать в самом примитивном одноклеточном организме для его функционирования, составляет где-то между 89 и 97, предполагая, что M. Genitalium является репрезентативным примером. Мы можем допустить что первый организм имел намного меньше ферментов, Возможно, это был минималист, всего с парой ферментов внутри, умело задавший тенденцию для всех будущих клеточных существ, но имел их и мы должны вглянуть на сложность работы всего двух из них.


В отличие от более сложных клеток, простейшие клетки (прокариоты, такие как LUCA) не имеют ядра или каких-либо других мембраносвязанных органелл. Вместо этого их ДНК свободно плавает в клетке вместе с несколькими другими важными молекулами, такими как рибосомы и ферменты. У прокариот также есть клеточная стенка, защищающая их, и плазматическая мембрана, удерживающая все внутри. В целом прокариот – это довольно простая клетка но давайте посмотрим на сложность и как должны работать ферменты в этой простой клетке.

Функции только полимеразы во время репликации бактериальной ДНК включают инициацию, элонгацию и корректуру.

Это три этапа репликации ДНК, то есть процесса копирования ДНК перед делением клетки. Простыми словами, они означают следующее:

Инициация – это начало репликации, когда специальные белки распознают и разделяют две нити ДНК в определенных местах, называемых происхождением репликации. Это создает два вилкообразных участка, где начинается синтез новых нитей ДНК.

Элонгация – это продолжение репликации, когда ферменты, называемые ДНК-полимеразами, добавляют нуклеотиды (строительные блоки ДНК) к новым нитям ДНК, следуя за образцом старых нитей. Это происходит в обоих направлениях от происхождения репликации, образуя две новые двунитевые молекулы ДНК. Элонгация – акт, в котором полимераза растягивает ДНК, как молекулярный акробат, создавая копии с точностью микроскопического ювелира. Это похоже на то, что полимераза является модельером ДНК, адаптируя генетическую ткань к каждому изящному расширению клетки.

Полимераза обладает механизмом корректуры, который обнаруживает и исправляет ошибки во вновь синтезированных цепях ДНК. Этот процесс обеспечивает точность репликации за счет сведения к минимуму возникновения мутаций. Обладая острым вниманием к деталям и нюхом на молекулярные нарушения, полимераза выслеживает мутации, как генетическая ищейка, почти гарантируя, что каждая копия ДНК будет такой же неизмененной..

Полимераза – это фермент, ответственный за синтез новых цепей ДНК во время репликации. У бактерий основной задействованной полимеразой является ДНК-полимераза III (Pol III). Он обладает замечательной точностью и эффективностью, что делает его жизненно важным игроком в механизме репликации. Полимераза производит новые цепи ДНК, словно работающая на перегрузке генетическая фабрика.


Еще один важный компонент Хеликаза – это фермент, который играет жизненно важную роль в раскручивании двойной спирали ДНК во время репликации. Он функционирует, разрывая водородные связи между парами оснований, разделяя две цепи и создавая репликационную вилку.

Функции хеликазы во время репликации бактериальной ДНК включают раскручивание ДНК и предотвращение повторного отжига

Хеликаза связывается с началом репликации и движется вдоль молекулы ДНК, постепенно разделяя две цепи в противоположных направлениях. Это раскручивающее действие создает репликационную вилку, в которой синтезируются новые цепи ДНК.

Продвигаясь по молекуле ДНК, геликаза действует как полицейский – регулировщик движения, следя за тем, чтобы ни одна полоса не пересекалась и не происходило аварий. Это очень ответственный процесс где одно неверное движение может сбить весь процесс репликации.

Когда геликаза движется вдоль молекулы ДНК, она предотвращает повторное отжиг разделенных цепей, обеспечивая плавность процесса репликации.


Свободные нуклеотиды относятся к отдельным нуклеотидным строительным блокам (аденин, цитозин, гуанин и тимин), присутствующим в клеточной среде. Эти нуклеотиды служат сырьем для синтеза ДНК во время репликации и должны присутствовать рядом.

К функциям свободных нуклеотидов при репликации бактериальной ДНК относятся:

а) Субстрат для полимеразы: свободные нуклеотиды действуют как субстраты для ДНК-полимеразы во время фазы элонгации репликации. Полимераза выбирает подходящий нуклеотид на основе правила комплементарного спаривания оснований и добавляет его к растущей цепи ДНК. При каждом акте репликации полимераза выбирает идеальный нуклеотид на основе правила комплементарного спаривания оснований – аденина для тимина, цитозина для гуанина – почти гарантируя, что каждое добавление представляет собой генетическое совпадение, когда пара будет навсегда вместе.



б) Комплементарное спаривание оснований: свободные нуклеотиды спариваются со своими комплементарными основаниями на цепи матрицы ДНК. Аденин (А) соединяется с тимином (Т), а цитозин (С) – с гуанином (G). Это обеспечивает точную и достоверную репликацию исходной последовательности ДНК. Это похоже на примитивную молекулярную историю любви, где каждой паре оснований суждено быть вместе навсегда в двойной спирали жизни.


Полимераза синтезирует новые цепи ДНК, хеликаза раскручивает спираль ДНК, а свободные нуклеотиды служат строительными блоками для синтеза ДНК. Вместе они организуют точное дублирование генетической информации, позволяя бактериальным клеткам расти, делиться и передавать свой генетический материал последующим поколениям. И все эти 3 компонента в допустимых пропорциях должны быть внутри клетки, без этого процесса жизни клетки не будет. Непонятно так-же будет ли жизнеспособна клетка с всего несколькими ферментами. нуклеотидами. Хотя возможно что это святая троица и в связи с этим допустим что и это возможно.


Как первые живые клетки возникли из неживых молекул? Какие химические и физические условия способствовали образованию и репликации первых самовоспроизводящихся молекул, таких как РНК или ДНК? Как первые клетки приобрели основные функции метаболизма, мембраны и обработки информации? Это некоторые вопросы, на которые ученые пытаются ответить, используя различные экспериментальные и теоретические подходы, но точное происхождение жизни до сих пор непонятно.

Итак, как мы понимаем, создание простой клетки со свойствами жизни гораздо менее вероятно, чем просто создание ДНК. Это как будто ураган создает из обломков машин самолет и несколько функционирующих аэропортов.

В 1974 году советский физик И. А. Кунин опубликовал работу, в которой он оценил вероятность появления жизни во Вселенной при условиях если если одна из 10 звёзд имела бы планету с условиями похожими на земные.

Кунин оценил вероятность возникновения жизни во Вселенной как 10 в минус 1018 степени. Это означает, что шансы на случайное возникновение органической жизни настолько малы, что можно сравнить их с вероятностью максимального выигрыша в реальной лотерее миллионы раз подряд.

Классическая биология твердит о том что за миллиарды лет на миллирдах планет такое событие должно было бы произойти. И якобы случайно произошло именно на Земле.

Но когда будет обнаружена жизнь в других уголках хотя бы еще в одном месте космоса этот факт укажет на то что это явление более вероятное и теория чисто химического джек пота не верна.


Хорошо. Около четырех миллиардов лет назад из неживой материи появляется первый органический живой организм. Этот вид организма мутирует и одноклеточные начинают появляться в огромном разноообразии, в чем собственно нет никакого чуда, одноклеточные имеют способность быстро мутировать, если конечно они живы и здоровы. В древние времена возникают одноклеточные растения – они синтезируют питательные вещества из неорганических веществ в основном путем фотосинтеза, возможно потом появляются грибы и одноклеточные животные которые пытаются другими живыми организмами или умершими одноклеточными растениями, грибами или животными.

В общем это мир где одноклеточные растения усердно фотосинтезируют, преобразуя солнечный свет в средства к существованию, подобно маленьким солнечным панелям природы. Это мир где грибы просто разлагают органический материал с энтузиазмом фанатика вторичной переработки, а простейшие одноклеточные предки животных, грустно пожирающие своих собратьев-одноклеточных соотечественников пока даже не мечтают увеличится.

И около миллиарда лет назад в этом мире клеточного развития все одноклеточные существа, имеющие серьезные отличия в способах питания и строения самой клетки, вдруг питают неожиданное стремление стать многоклеточными. Эти крошечные организмы, довольные своим одноклеточным существованием почему то развивают



стремление к более взаимосвязанному и совместному образу жизни другого уровня.

Но каким же образом одноклеточные грибы, растения и животные становятся многоклеточными на всех этих трёх сформировавшихся линиях? Возможно, некоторым из них наскучила одиночная жизнь, или, возможно, они просто хотели усложнить ситуацию для биологов 21-го века небольшим сотовым сожительством? Может быть, некоторых из них связала общая любовь к групповому фотосинтезу а других массовое и взаимное презрение к хищным простейшим – кто знает? Кто знает, что происходило в жизни одноклеточных существ? Некоторые ученые считают это событие возникновения многоклеточности более невероятным, чем возникновение самой жизни.


Еще более странным и невероятным для объяснения в рамках классической науки выглядит то что некоторые очень сложные изменения появляются на нескольких направлениях развития живых существ. Примерно одновременно появляются многоклеточные растения и грибы, а чуть позже и многоклеточные животные. Примерно одновременно у них у всех появлется такое свойство как половое размножение. Каким то непостижимым образом произошли мутации создавшие в них желание заниматься сексом.

Существует ряд причин, по которым у некоторых ученых есть сомнения в преимуществах полового размножения с эволюционной точки зрения. Половое размножение требует больше энергии и ресурсов, чем бесполое.

Это связано с поиском партнера, образованием половых гамет, спариванием, беременностью и т. д. Ну на счет партнера вы точно знаете.

Бесполое размножение жё наоборот позволяет быстро производить потомство, которое хорошо приспособлено к окружающей среде. Бесполое размножение требует меньше энергии и ресурсов, чем половое. Бесполое размножение позволяет быстро размножаться без необходимости искать партнера и оно обычно происходит быстрее и проще, чем половое.

Конечно и половое размножение имеет ряд бесспорных преимуществ перед бесполым. Не будем упоминать удовольствие от процесса, есть и другие. При половом размножении слияние гамет от разных родителей может привести к маскировке вредных рецессивных аллелей, что снижает вероятность того, что у потомства будут проявляться наследственные заболевания. А во время мейоза, предшествующего половому размножению, происходит рекомбинация хромосом, что позволяет «отремонтировать» поврежденные участки ДНК.

Это обеспечивает более высокое качество генома у потомства.

В целом, половое размножение обеспечивает более высокую степень адаптации чем бесполое. Но при такой защите генома врятли может произойти эволюционный скачок органического вида. Это еще одна загадка эволюции органической жизни хотя существует и много других.


Как многоклеточные организмы произошли от одноклеточных, состоящих из одной клетки, выполняющей все функции жизни? Как формировались и сотрудничали первые многоклеточные агрегаты или колонии? Как у многоклеточных организмов появились механизмы клеточной адгезии, коммуникации, дифференцировки и развития? Как многоклеточность развивалась независимо несколько раз в разных линиях, таких как животные, растения, грибы, водоросли и слизевики?



Для того что бы одноклеточное стало многоклеточным надо что бы появились механизмы, которые позволяют контролировать процесс деления и создавать новые клетки с определенными функциями, появилась с пособность к дифференциации клеток и способность к взаимодействию клеток. Клетки многоклеточного организма должны взаимодействовать друг с другом в тысячи раз лучше чем самая лучшая футбольная команда на чемпионате мира, чтобы организм мог функционировать как единое целое. Это взаимодействие обеспечивается различными механизмами, такими как выделение химических веществ, контакт между клетками, передача сигналов и возможно еще чем-то. Многие ученые утверждают, что многоклеточность – это сложное и случайное явление, которое требует невероятно специфических и редких адаптаций и инноваций.


При развитиии животного мира было еще много странностей конвергентной эволюции.

Кембрийский взрыв – это термин, который находит широкий отклик, вызывая образы внезапного всплеска жизни почти полмиллиарда лет назад, однако его истинная суть остается загадочной не только для широкой публики, но и для экспертов. Кембрийский период отмечен тем, что многие называют «взрывом» жизни – резким распространением сложных многоклеточных организмов в течение относительно короткого геологического периода, что оказало глубокое влияние на эволюционное развитие нашей планеты.

Этот период особенно интересен, поскольку он бросает вызов классической теории эволюции, как отметил даже создатель теории эволюции сам Чарльз Дарвин. Дарвин признал кембрийский взрыв значительной аномалией, которую его теория постепенной эволюции посредством естественного отбора пыталась полностью объяснить. Во многом это связано с тем, что многие формы жизни, по-видимому, внезапно приобрели твердые минерализованные скелеты, что является серьезным отличием от преимущественно мягкотелых организмов предыдущих эпох. Организмы, которые миллиарды лет были мягкими, внезапно начали носить твердые, минерализованные скелеты, как последняя модная тенденция, появления которой никто не предвидел.

Современные исследования дают некоторое представление об этой быстрой диверсификации, указывая на генетические факторы и факторы окружающей среды, которые, возможно, способствовали развитию минеральных скелетов. Понятно, что формирование этих структур является не только результатом благоприятных условий окружающей среды, но и требует специфических генетических адаптаций. Ферменты, регулируемые определенными генами, играют решающую роль в синтезе материалов, необходимых для построения скелетной ткани.

Появление этих генов поднимает серьезные вопросы о природе эволюционного развития: если до кембрийского периода организмы не обладали этими генами, как они внезапно эволюционировали по нескольким линиям развития? Каким образом без перекрестного генетического сквзаимодействия вдруг появляюстся скелеты у многих видов? Им кто-то выдал генетический пропуск в клуб по наращиванию костей?

Эта быстрая эволюция во время кембрийского взрыва остается темой интенсивных исследований и дискуссий. Кембрийский взрыв это когда несколько линий независимо развили схожие черты, такие как твердые скелеты – явление, известное как конвергентная эволюция. Это очень похоже на то как почему то примерно в одинаковое время у трех боле первичных направлений развития жизни – грибов, растений и животных появляется многоклеточность.


Итак, продолжим обсуждение некоторых несоответствий в ортодоксальной науке, поиске парадоксов, явлений и для начала покажем некоторые серьезные несоответствия относительно скорости эволюции. На Земле появление сложной разумной жизни потребовало предшествующей серии эволюционных переходов, таких как эукариогенез, многоклеточность, эволюция полового размножения, появление скелета, зубов на нужном месте а не на верхушке черепа в виде короны, органов чувств, кожи, способности вскармливания детей молоком, появление сложной имунной системы, сердечно сосудистой, дыхательной, гормональной, лимфовой, мышечной и нервных систем, сложного мозга и собственно интеллектa.

В сложных многоклеточных десятки и сотни различных видов клеток. Только в человеческом организме около 200 типов различных типов клеток, которые выполняют различные функции (нервные, мышечные, костные и так далее), которые развились до совершенстава для выполнения своих функций и взаимодействия с другими клетками организма. Имея один и тот-же генетический аппарат каждый вид клеток функционирует своим сложным образом для выполнения именно заложенной для нее функции. Это как будто эти все виды клеток получили огромную книгу с рецептами блюд но на каждой определенной территории могут готовить только одно присущее этой территории блюдо.


Некоторые из переходов в эволюции жизни могут быть крайне маловероятными даже при благоприятных условиях. Считается, что появление разумной жизни в конце существования Земли является свидетельством нескольких редких эволюционных переходов, но время других эволюционных переходов в летописи окаменелостей еще предстоит проанализировать в аналогичной рамках.

Для работы со сложными данными хорошо подходит Байесовская модель выявления вероятности события.

Байесовская модель имеет возможность работы с сложными и нестандартными моделями, для которых классические методы не применимы или неэффективны, имеет возможность оценивать вероятность гипотез и сравнивать различные модели, а так-же получать полное распределение параметров и прогнозов.



Используя упрощенную байесовскую модель вероятности, которая объединяет неинформативные априорные данные и время эволюционного перехода, мы обнаруживаем, что ожидаемое время эволюционного перехода, вероятно, превысит время жизни Земли, возможно, на многие порядки. Это цитата из научного исследования авторов А. Снайдера-Битти, А. Сандберга, К. Дрекслера и М. Бонсолла, проведенного в 2020 году.

Такие данные были получены в упрощенной модели, более сложная модель должна показывать более длительное время эволюции.


На много порядков? В 100, 1000, 10 000 раз больше жизни на Земле?

Согласно расчетам и их байесовской модели, ожидаемое время этих ошеломляющих эволюционных переходов настолько невероятно велико, что продолжительность жизни Земли кажется сверхкороткой рекламной паузой во время трансляции самого длинного сериала! Представьте себе: существование Земли – это крошечная песчинка на огромном космическом пляже, и эти эволюционные переходы, ну, они тянутся, как бесконечная береговая линия. И как это возможно? Что-то не так с эволюцией? Ведь что-бы вид не вымер а имел шансы выжить и совершенствоваться количество мутаций на единицу вида и времени не должно быть очень большим для простых организмов и должно быть еще меньше для более сложных. Основываясь на данных космологии, к которой мы еще обратимся позже мы не можем сильно изменить возраст Земли, но найдём хороший ответ на вопрос – Почему это происходит так быстро? Как красиво уложить многие несоответствия в одной теории как разные фигуры в игре в Тетрис?


Хотя тут в спор вступают многие биологи которые утверждают что для эволюции необходим тот самый естественный отбор, который не случаен. Что это значит по их предположениям? Грубо говоря если вспомнить великого Эйнштеина с его выражением что Бог не играет в кости и допустить что играет что-то другое или кто-то другой, и если гены заменить игральными костями и в игре в кости кинуть 10 кубиков и получить результат сразу 10 шестерок не надо их кидать миллион раз все 10 штук. Они логично утверждают что надо кидать лишь те кубики которые не показали цифру 6 после предшествующих бросков. И таким образом через несколько десятков бросков вероятно все кубики будут показывать цифру 6.

И это действительно так но лишь на некоторых коротких этапах типа замены размера или цвета крыла у бабочки или твердости или размеров рогов у оленя. Преодоление разрыва между микроэволюционными процессами (изменениями внутри популяций) и макроэволюционными закономерностями (крупномасштабными эволюционными тенденциями и событиями видообразования) является непростой задачей.

Для понимания того что крупное преобразование в живом организме необъяснимо один из специалистов в области теории информации Герберт Саймон предлагает нам представить себе часовщика, которого то и дело отрывают от работы. Если часовщику приходится каждый раз начинать все сначала, он может так никогда и не справиться со своей задачей. Но если он собирает группы деталей в блоки, которые затем соединяет между собой, то может закончить работу.

Уже начиная с 1930—х годов Голдшмидт и другие исследователи ставили под сомнение представление о том, что эволюция происходит путем постепенного накопления небольших изменений. Они утверждали, что с даже с помощью лабораторных исследований можно зафиксировать лишь внутривидовые изменения, но не образование новых видов. Было найдено лишь немного ископаемых остатков, представляющих промежуточные стадии между видами, и значительно меньше таких, которые бы соответствовали переходам между крупными таксономическими единицами (классами или семействами). Хотя многие смеют утверждать что переходных видов было еще меньше или не было вообще потому-что найденные кости были неправильно собраны.

Они предположили, что новые виды и семейства возникают непредсказуемым образом в тех крайне редких случаях, когда в результате «системных» мутаций, сходных с теми, что действуют на ранних стадиях развития эмбриона, появляются жизнеспособные существа.

На страницу:
2 из 4