Полная версия
Научные открытия
Лиза Заикина
Научные открытия
Я с детства испытывала огромное пристрастие к науке. Учебе я уделяла все свое время. Из–за плохой, как мне казалось, памяти, но огромного желания все знать, я учила уроки до поздней ночи и без выходных. Меня нельзя было назвать ботаником, потому что я умела активно отдыхать, чтобы набраться новых сил. Я родилась такой. В два года стремление скорее научиться читать было важнее игрушек. Уже тогда во мне зарождалась сильная любовь к математике. В младших классах после школы я писала математические теоремы, формулы и их доказательства мелом на доме. Мое родные считали, что я просто ухожу гулять, и мое занятие им жутко не нравилось. Я же просто хотела писать формулу за формулой так, как требовала душа.
Я учила больше, чем требовалось. Одним летом, когда все дети гуляли, будучи уже повзрослевшими, я каждый день с утра до ночи читала классику. Мне многое хотелось знать наизусть, и я очень печалилась, когда мой мозг что–то забывал. От переизбытка информации я могла не вспомнить имя одноклассника, да и вообще имена своих многочисленных друзей. Меня и любили, и ненавидели. Для меня было важным знать каждый предмет на «отлично», но я могу сказать честно, я не испытывала ни разу ни с кем конкуренции. Для меня не было первых, потому что я занимала все позиции. На третьем курсе института меня приняли в ученый совет, правда, тогда я совсем не стремилась к этому, поэтому статус оказался для меня пустым местом.
Сегодня все страхи, насмешки и прочие комплексы остались позади. Я свободно могу писать научную книгу, веря, что она принесет пользу миру. Вначале я планировала написать книгу лишь с математическими теоремами, но потом поняла, что я слишком разносторонне развитый человек, чтобы делать акцент на чем–то одном. К сожалению, теоремы, которые я открывала в детстве, сейчас я вспомнить не смогла, поэтому написала новые. Эта книга включает в себя мое научное видение математики, геометрии, физики, химии, биологии, астрономии, географии, истории, литературы, искусства, спорта, медицины, психология, философии, религии, политики, экономики и дипломатии. В ней собраны мои теоремы, формулы, научные рассуждения, понятия и доказательства к ним. Я начинала писать книгу в очень большом объеме, с многословными рассуждениями и многочисленными примерами, но потом я решила сузить объем до минимума и привести лишь по одному примеру.
Спасибо Богу. Спасибо Божьей матери.
ГЛАВА 1. НАУЧНЫЕ ИССЛЕДОВАНИЯ
Теорема 1. Произведение n–го количество Х всегда равно произведению n–го количеству других Х, если мы имеем возможность вычислить хотя бы одно Х при некотором числе L.
Х1 * Х2 * Х3 * Хn – 1 = X4 * X5 * Xn, при числе L = Хn – Хn – 1
Доказательство:
Вычислим одно из Х, пусть это будет Х1
Х1 = Х4 * Х5 / Х2 * Х3, при L = (Х4 + Х5) – (Х2 + Х3)
Пусть Х2 = 1, Х3 = 2, Х4 = 3, Х5 = 4, тогда Х1 = 3 * 4 / 1 * 2 = 6
Полученный расчет в виде формулы: 6 * 1 * 2 = 3 * 4, при L = (3 + 4) – (1 + 2) = 4
Пример. Учитель купил 2 альбома, при этом в его классе 32 ученика. Сколько не хватает альбомов, чтобы раздать их каждому ученику?
Решение: Х2 = 2, Х3 = 32, Х1 – ?
Х1 * Х2 = Х3, при L = Х3 – Х2. Тогда Х1 = Х3 / Х2 = 32 / 2 = 16
В виде формулы: 16 * 2 = 32, при L = 32 – 2 = 30
Ответ: Чтобы раздать каждому ученику альбом, необходимо купленное количество альбомов увеличить в 16 раз, то есть закупить еще 30 штук.
Теорема 2. Произведение n чисел определяет некое число L с вероятностью +/– число N (количество n). Причем разница между плюсовым и минусовым выражением значения L+/– N составляет 2N.
И наоборот, произведение n чисел определяет некое число L, которое вычисляется от числа N (количество n) с вероятностью +/– . Причем разница между плюсовым и минусовым выражением значения N+/– L составляет N+K, где K=Z–N при условии, что N не равно L.
Z = (Х1 * Х2 * Хn = L + N) – (Х1 * Х2 * Хn = L – N) = 2N, и наоборот
Z = (Х1 * Х2 * Хn = N + L) – (Х1 * Х2 * Хn = N – L) = N + K (при K = Z – N, N не равно L)
Доказательство:
Обозначим Х1 = 1, Х2 = 2, пусть число N = 2
Подставив значения в формулы:
Z = Х1 * Х2 = L + N, получим Z = 1 * 2 = 3 + 2 = 5,
Z = Х1 * Х2 * Хn = L – N, получим Z = 1 * 2 = 3 – 2 = 1.
Следовательно, Z = Z1 – Z2 = 5 – 1 = 4 и 4 = 2N, где N по условию было 2
Подставим значения в общую формулу: Z = (1 * 2 = 3 + 3) – (1 * 2 = 3 – 3) = 2 * 3, то есть 2N
И наоборот, при тех же значениях, где N не равно L, подставим значения в общую формулу Z = (Х1 * Х2 * Хn = N + L) – (Х1 * Х2 * Хn = N – L) = N + K, где К = Z – N
Z = (1 *2 = 2 + 3) – (1 * 2 = 2 – 3) = 5 – (–1) = 6 = 2 + 4, то есть N + K
Пример. У Славы было 4 карандаша, Никиты 2, Данилы 7, Маши 2. У скольких ребят были карандаши?
Решение: Х1 = 4, Х2 = 2, Х3 = 7, Х4 = 2, доказать что N = 4
Z = (4 * 2 * 7 * 2 = 112 + 4) – (4 * 2 * 7 * 2 = 112 – 4) = 8 = 2 * 4, что доказывает теорему, т.к. Z = 2N
Рассмотрим наоборот:
Z = (4 * 2 * 7 * 2 = 4 + 112) – (4 * 2 * 7 * 2 = 4 – 112) = 224 = 4 + 220 (где N не равно L), то есть у 4 ребят при некотором числе L = 220
Ответ: У 4 ребят были карандаши.
Теорема 3. Произведение Хn чисел равно значение NХ, где N – некое число, Х – общее значение произведения Хn.
Х1 * Х2 * Хn = NX
Доказательство:
Пусть Х1 = 1, Х2 = 2, то Х1 * Х2 = 1 * 2 = 2
Число 2 в свою очередь можно представить в выражении NX, то есть 1 * 2 (где N = 1, а Х = 2) или 2 * 1, а можно и 0,5 * 4 или 4 * 0,5 и тд.
Следовательно, Х1 * Х2 * Хn действительно имеет равенство NX. Если мы будем знать Х1, Х2 и N, то сможем вычислить общее значение Х.
Пример. В класс привезли 2 парты и 3 стула для 4 учеников. Сколько парт было укомплектовано, если учесть, что за 1 партой сидят 2 ученика.
Решение: Х1 = 2 (парты), Х2 = 3 (стула), N = 4 (человек), Х – ?
Подставим значения в формулу: Х1 * Х2 * Хn = NX, получим 2 * 3 = 4Х
Вычислим Х = 2 * 3/4 = 1,5 (укомплектовано парт)
Ответ: В классе было укомплектовано 1,5 парты, то есть 3 ученика могли занять свои места.
Теорема 4. Любое свободное число Х имеет вероятность равняться другому свободному числу Х, где одно из Х состоит из сумм Хn, образуя в дополнении свободное число L.
Х1 = Х2 + Х3 + Хn, где Х3 + Хn = L
Доказательство:
Пусть Х1 = 5, Х2 = 10. Подставим значения в формулу, где представим, что 10 = 5 + 5, то 5 = 5 + 5, где L = 5
Пример. У девочки было 10 конфет, через три дня у нее осталось 7. Сколько съела конфет за три дня девочка?
Решение: Х1 = 10, Х2 = 7, L – ?
Подставим значения в формулу Х1 = Х2 + Х3 + Хn, получим 10 = 7 + 3, где L = 3
Ответ: За три дня девочка съела 3 конфеты.
Теорема 5. Одно некое меньшее число равно другому большему числу и наоборот. А также числа равны между собой, если имеют одинаковое значение.
Х1 = Х2, при этом Х1 > или < Х2
Доказательство:
Пусть Х1 = 1, Х2 = 1 млн., то 1 = 1 млн., где 1 = 1 млн
Пример. В России в 2016 году 2 млн. детей получили путевки в лагеря. Для кого были представлены путевки?
Решение: Х1 = 1 (ребенок), Х2 = 2 млн. (путевки), вероятность получения путевки?
Подставим значения в формулу Х1 = Х2, получим 1 = 2 млн.
Ответ: Путевки были предоставлены для человека с вероятностью ее получения 1 к 2 млн.
Теорема 6. Ноль имеет отличное от нуля значение, если был получен путем умножения числа Ln на ноль. Именно число Ln и есть значение отличное от 0.
0 = Ln * 0, где Ln – любое число или произведение чисел
Доказательство:
Пусть L =5 * 6, тогда 0 = 5 * 6 * 0 и получаем 0 = 0, значит ранее было значение 5 * 6
Пример. Катя съела 4 яблока и 7 апельсинов. Сколько у нее было яблок и апельсинов?
Решение: L1 = 4, L2 = 7, L – ?
Подставим значения в формулу 0 = Ln * 0, получим: 0 = 4 * 7 * 0, где L = 4 * 7
Ответ: У Кати было 4 яблока и 7 апельсинов.
Теорема 7. Бесконечное число М убирает из расчета появление числа L, что невозможно и поэтому любая бесконечность, имеет конец N.
М1 * M2 * Mn * L = N
Доказательство:
Пусть M1 = 1, М2 = 100, Mn = бесконечность, L = 0. Подставив в формулу М1 * M2 * Mn * L = N данные значения, получаем 1 * 100 * … * 0 = 0. Число L определило конец бесконечности, равный 0.
Пример. У мальчика было много карандашей и одна ручка. Он пересчитал карандаши и обнаружил, что у него 140 карандашей. Какую бесконечность карандашей мальчик имела до подсчета?
Решение: M1 = бесконечность, N = 140, бесконечность –?
Согласно формуле М1 * M2 * Mn * L = N получаем бесконечность * L = 140
Ответ: До подсчета мальчик имел бесконечность карандашей в количестве 140 штук при неизвестной величине L.
Теорема 8. Любое ошибочное число Х не подлежит исправлению, потому что за ним следует число Y. Ошибочное число Х принимается произошедшим, а значит явным. Правка числа Х не приведет к верному решению.
X * У = Т, где Т – решение
Доказательство:
Пусть Х = 2, У = 3, тогда подставив значения в формулу X * У = Т, получаем 2 * 3 = 6. Таким образом мы определили, что Т = 6. Поменяем значение Х = 3, тогда 3 * 3 = 9, где Т = 9. В первом случае Т имело другое значение, чем во втором. Таким образом, ошибочное число Х не подлежит исправлению.
Пример. Наташа купила 5 яблок, одно из которых съела по дороге домой. Сколько принесла бы домой яблок Наташа, если бы она не съела одно яблоко?
Решение: Х = 5, У = 1 – 1. Во втором случае Х = 5, У = 1, Т – ?
Подставим значения в формулу X * У = Т, получим в первом случае 5 * 1 – 1 = 4, а во втором 5 * 1 = 5
Ответ: Если бы Наташа не съела одно яблоко, то она принесла бы домой 5 яблок.
Теорема 9. Любое число А позволяет использовать счет В, но у любого числа и счета есть некая характеристика N.
А * N = В * N
Доказательство:
Пусть А = 2, N = 5. Определяя число В по формуле А * N = В * N, получим 2 * 5= ? * 5. Значит счет В как и число А имеет значение равное 2.
Пример. У Алены остался один мяч, в то время как второй мяч она отдала Коле. Сколько у ребят было мячей?
Решение: А = 1, В = 1, A + B – ?
Подставим значения в формулу А * N = В * N, получим 1 * N = 1 * N, где N – это Алена и Коля. Тогда 1 N + 1 N = 2 N.
Ответ: У ребят было два мяча.
Теорема 10. Число, увеличенное (уменьшенное) во много раз всегда имело свое первоначальное значение, которое потребовалось другому числу увеличить (уменьшить).
A = A * M = B или А = А : М = В, где А – число, М – много раз, В – другое число
Доказательство:
Пусть А первоначально равнялось 2. Увеличив число А в пять раз, согласно формуле A = A * M = B мы получим 2 = 2 * 5 = 10. И наоборот.
Пусть А = 4. Уменьшив число А в два раза, согласно формуле A = A * M = B мы получим 4 = 4 : 2 = 2.
Следовательно, число А путем увеличение (уменьшения) привело нас к числу В.
Пример. После дня рождения у Ромы было 10 машинок. Сколько первоначально было машинок у Ромы?
Решение: В = 10, М – неизвестно, А –?
Подставим значения в формулу A = A * / M = B и получим А = А * / М = 10. Не зная данных по увеличению или уменьшению машинок, мы не можем узнать первоначальное количество машинок.
Ответ: Мы не можем узнать первоначальное количество машинок.
Теорема 11. Любая плоскость представляет собой сумму значений Xn. При изменении значения n меняется сама плоскость.
Доказательство:
Квадрат имеет 4 вершины или Х4
Треугольник 3 вершины или Х3
Прямая – Х2
Круг – Хn
В начале мы имели круг – Хn. Если Хn уменьшить на множественное значение n, то мы рано или поздно получим Х4 (квадрат).
Х4 – 1 = Х3 (треугольник)
Х3 – 1 = Х2 (прямая)
Х2 – 1 = Х1 (точка)
Следовательно при увеличении точек Х1 увеличивается и сама плоскость.
Пример. Андрей на уроках труда вырезал из квадрата треугольник. Сколько треугольников у него получилось?
Решение: Квадрат Х = 4, треугольник Х = 3, то 4 – 1 = 3, где 1 – это прямая, которая имеет 2 конечные точки. Тогда 4 (квадрат) – 2 (прямая) = 2 (два треугольника)
Ответ: На уроках труда Андрей вырезал из квадрата два треугольника.
Теорема 12. Любые противоположности имеют две плоскости A и B, сменить значение которых может сила S.
А || B, но А =В * S или А * S = B или А * S = b * S
Доказательство:
Пусть А – плоскость дна куба, В – плоскость крышки куба, А || В не пересекаются.
Если сила S имеет возможность реагировать на силу А или силу В, то в любой момент А и В могут стать одной плоскостью. Допустим S – удар по крышки куба, тогда крышка упадет на дно куба и A = B * S.
Пример. Рабочий на стройке нес кирпич, который выпал из рук и раскололся. На какие фигуры раскололся кирпич?
Решение: Кирпич имел две плоскости А и В. В результате падения на него подействовала сила S согласно формуле А * S = B или А * S = b * S. Таким образом, кирпич разбился на новые плоскости.
Ответ: Кирпич раскололся на новые плоскости.
Теорема 13. Треугольник Х3 всегда может превратиться в круг Хn, потом вернуться в свою первоначальную форму Х3, пока для этого будут условия. Также происходит и с другими фигурами.
Хi + 1 = Хn и Хn = Хn–i, где i – значение фигуры
Доказательство:
Если треугольник – Х3, а круг – Хn, то Хn–1 – это прямая, Хn–3 – это треугольник. И обратно треугольник Хn+3 = Хn, где Хn – круг.
Пример. Марина вырезала из круга треугольник, а потом из треугольника круг. Сколько треугольников получилось у Марины?
Решение: Хn–3 = Х3 = Хn + 3 = Хn, где Хn – это круг.
Ответ: У Марины получился круг.
Теорема 14. Параллельные линии представляют собой прямые. Как только одна прямая Х1 длиннее другой Х2, то параллельность линий сменяется одной прямой линией Х1.
Х1 > Х2 = Х1
Доказательство:
Одна прямая имеет точки Х1 и У1, вторая – Х2 и Y2. Если Х1 > Х2, а У1 > Y2, то получается что Х1У1 > Х2У2, а значит Х1Y1 – образует линию длиннее Х2У2 и представляет собой одну прямую с точками точки Х1 и У1.
Пример. Три мальчика ехали на самокате по дороге. Первого позвала домой мама, второй остановился и всех дальше проехал третий мальчик. Где разминулись параллельные траектории мальчиков?
Решение: Представим траекторию каждого мальчика согласно условию, получим Х1У1 < Х2У2 < Х3У3, то есть параллельные траектории разминулись, когда Х1У1 < Х2У2.
Ответ: Параллельные траектории мальчиков, которые ехали на самокате по дороге, разминулись уже тогда, когда первого мальчика позвала домой мама.
Теорема 15. Поместить одну фигуру Мn–1 в другую Мn можно до бесконечности. Только фигуры должны быть с каждым разом меньше, то есть Мn–1 < Мn. Но любая фигура Mn, превышающая предыдущую Mn–1, может быть уменьшена.
Мn–1 < Мn < Мn–1
Доказательство:
Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4 < Мn < М4.
Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?
Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3 < M3 < Mn. Следовательно, Mn < M3
Ответ: Дети могут из круга вырезать новые треугольники.
Теорема 16. N–е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.
Тn = P, если R = P – Tn = 0
Доказательство:
Пусть T1 + T2 + … + Tn = P, то R = P – T1 – T2– … – Tn = 0. Для того чтобы N–е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R = P – T1 – T2 – … – Tn = T1 + T2 + … + Tn – T1 – T2– … – Tn = 0 и получим равенство прямоугольников Tn с квадратом.
Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?
Решение: Т = 5, P – квадратное дно, R – ?
Используя общую формулу R = P – Tn, получим R = P – 5. То есть размер пяти прямоугольников будет равен размеру квадрата.
Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.
Теорема 17. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.
F = F, но F * Ri = P
Доказательство:
Пусть фигура F – круг. Увеличивая радиус R пропорционально центра круга, нужно учитывать, что радиус может измениться. Следовательно, F * Ri = P, где Р – это уже не круг.
Пример. Мальчик на дороге нарисовал мелом круг, затем вокруг первого круга второй круг, но получился овал. Почему у мальчика получился овал, а не круг?
Решение: F круг, P – овал, R – ?
Используя общую формулу F * Ri = P, получим Ri = P / F. Когда мальчик рисовал круг, его радиус был непостоянен.
Ответ: У мальчика получился овал, а не круг, потому что он не смог увеличить радиус круга с одинаковой точностью от центра.
Теорема 18. Множество точек Хn образует фигуру P, которая определяет их расположение. На расположение точек оказывают влияние и разные факторы f. Таким образом точки Хn под влиянием факторов f образуют ту или иную фигуру P.
Х1 * f + Х2 * f + … + Хn * f = P
Доказательство:
Пусть мы имеем две точки Х1 и Х2, на одну из точек повлиял фактор f, тогда мы получим фигуру Р согласно формуле Х1 * f + Х2 = P.
Пример. Работник имел 130 кирпичей для строительства стены. 1 кирпича он недосчитался, 2 – у него раскололись. Получилось ли у работника построить стену, если для ее строительства требовалось 100 кирпичей.
Решение: Х1 = 130, Х2 = –1 (недосчет), Х3 = –2 (раскололись), Р = ?
Используя формулу Х1 * f + Х2 * f + … + Хn * f = P, получим 130 + (–1) * недосчет + (–2) * раскололись = 127. Известно, что для строительства стены требовалось 100 кирпичей. Значит 127 – 100 = 27. Стена будет построена, и 27 кирпичей останутся лишними.
Ответ: У работника получилось построить стену.
Теорема 19. Мы не можем доказать равенство фигур А = В по признакам i. Любой признак i может оказаться ошибочным.
Аi = Вi, где i – число непостоянное
Доказательство: Пусть фигуры А, В имеют два признака – 2 * i, тогда А2 * i = В2 * i. Из–за непостоянности числа i любой из признаков может быть ошибочным i * 0. Получаем А2 * i = В2 * i * 0, А2 * i = 0. Следовательно, А = 0 и не равно В.
Пример. Мальчику подарили две одинаковых игрушечных машины, но одна машина сломалась. После ремонта у сломанной машины изменился вид. Сколько у мальчика было одинаковых машин?
Решение: А – рабочая машина, В – машина после ремонта, i * 1 – рабочая, i * 0 после ремонта. Используя формулу Аi = Вi, получим Аi * 1 = Вi * 0 и Аi * 1 = 0, то есть А – машина без ремонта.
Ответ: У мальчика были две разных рабочих машины.
Теорема 20. Расстояние I, пройденное от предметов An, зависит от размера предметов An * R.
А1 < i < А2, где i = An * R
Доказательство:
Пусть А1 > A2, значит A1 > i > A2, то есть наибольшее пройденное расстояние приходится на А2.
Пример. Мальчик вышел из центрального подъезда первого дома в центральный подъезд другого. Первый дом был больше второго дома. Какой путь прошел мальчик?
Решение: А1 – первый дом, В2 – второй, i – ?
Используя формулу А1 < i < А2, где i = An * R, получим А1 < i < А2. Следовательно, набольшее пройденное расстояние приходится на дом А1.
Ответ: Мальчик прошел от первого дома наибольшее расстояние, а путь ко второму дому оказался короче.
Закон 21. Любой предмет A заполненный воздухом взлетает лишь при силе S, которая есть в нем, и действует на него. Сила создается искусственно или возникает сама. В конечном итоге огромное количество факторов f будет влиять на предмет A. Значит формулой P = A * S * f * F можно лишь посчитать и все учесть, но всегда есть вероятность возникновения фактора F, которого не учили или пересчитали.
Доказательство:
Пусть на предмет А не будут влиять факторы f и сила S, тогда все в мире будет двигаться хаотично. Если бы не было неожидаемого фактора F, то все было бы спланировано. Из этого следует, что на любой предмет оказывает влияние множество факторов.
Пример. Мяч подкинули в небо, но он ударился об дерево и упал на землю. Чтобы произошло с мячом, если бы он не ударился об дерево?
Решение: Мяч – А, мяч подкинули – сила S, мяч ударился об дерево – F, P – ?
Согласно формуле P = A * S * f * F, главным фактором того, что мяч упал на землю, было дерево – F. В противном случае на падение мяча подействовал бы фактор притяжения земли – f.
Ответ: Если бы мяч не ударился об дерево, то на его падение подействовал бы фактор притяжения земли.
Закон 22. Время T, имеющее массу M, замедляет скорость V.
K = V – T * M
Доказательство:
Время без массы теряет свое значение, ибо оно может воздействовать на другой предмет лишь с помощью посторонней силы, и четко ей управляя. Чем больше масса, тем ниже скорость. И только время в сочетании с массой образуют величину, замедляющую скорость.
Пример: Грузовик должен прибыть к месту назначения через 10 минут. Успеет ли грузовик добраться до намеченного места?
Решение: T = 10 мин, М – грузовик, K – ?
Согласно формуле K = V – T * M, скорость грузовика будет замедлена его массой. Чем тяжелее будет груз, тем с меньшей скоростью он будет двигаться.
Ответ. Все будет зависеть от массы.
Закон 23. Белая поверхность Ab силой S и необходимыми элементами f превращается в другую поверхность B. Темный цвет At можно выбелить в белый с использованием различного фактора F.
Ab * S * f = B, At * F = B
Доказательство:
На белую поверхность Ab силой S нанесли темную краску f, а потом с использованием жидкости F стерли темную краску до белой поверхности.
Пример. Девочка покрасила забор в синий цвет. Что она использовала для этого?
Решение: Аz – поверхность забора, S – труд девочки, Аs – синяя поверхность, f – ?
Чтобы поверхность забора превратилась в синюю с использованием труда девочки, нужно иметь для этого все необходимые условия и главный фактор F – синюю краску.
Ответ: Девочка использовала синюю краску.
Закон 24. Любой предмет A имеет вес V. Подъем веса определяется нагрузками Z. Нагрузка зависит от силы S. Сила не всегда зависит от веса.
A = V * Z * (S), где (S) – отсутствие зависимости
Доказательство:
Вес V можно определить нагрузкой, которая зависит от действующей для этого силы S. Сила может быть разной, она не зависит от веса V, но оказывает влияние совместно с весом на любой предмет А. Следовательно, A = V * Z * (S).
Пример. Мама собрала сыну портфель, где были очень тяжелые учебники. Сыну 7 лет, он не смог поднять рюкзак, поэтому маме пришлось вынуть из рюкзака половину учебников. Почему мама и мальчик по–разному отнеслись к тяжести рюкзака?
Решение: А – рюкзак, V – тяжелый, S – убрали учебники, Z – мать/сын?
Согласно формуле A = V * Z * (S) мы видим прямое влияние предмета А, веса V на тяжесть Z. Сила S выступила лишь в роли решения проблемы с тяжестью Z.
Ответ: Мама и мальчик отнеслись по–разному к тяжести рюкзака, потому что тяжесть была зависима от веса рюкзака.
Закон 25. Увеличение массы М1 одного предмета А1 может повлечь за собой увеличение массы М2 другого предмета А2.
М1 * А1 –> М2 * А2
Доказательство:
Пусть мы имеем два предмета А1 и А2, причем предмет А1 поставили на предмет А2. Увеличивая массу М1 предмета А1, мы увеличим массу М2 предмета А2, следовательно М1 * А1 –> М2 * А2
Пример. Мальчик нес в руках две сумки одинакового веса. Он решил одну сумку переложить в другую. Что случилось с массой другой сумки?
Решение: А1 и А2 – сумки, М1 и М2 – вес сумок, М2?
Согласно условию М1 переложили в М2, то есть М1 –> М2 и как следствие М1 < М2. Согласно формуле М1 * А1 –> М2 * А2 получаем М1 * А1 < М2 * А2.
Ответ: Масса второй сумки увеличилась.
Закон 26. Скорость передачи мысли Vm не всегда быстрее скорости передачи слова Vs. Скорость V сдерживают факторы f.
Vm * f <–> Vs * f
Доказательство: Пусть мы что–то подумали и решили передать мысль другому человеку Vm, но мы могли подумать не правильно, и мысль передалась не ему. Пусть мы решили что–то сказать Vs, но в данный момент что–то нам помешало сказать, и мы не сказали. Таким образом, в обоих случаях, скорость передачи сдерживали факторы f,а скорость мысли Vm не всегда быстрее скорости слова Vs. Следовательно, Vm * f <–> Vs * f.