bannerbanner
Философия и теория «Единого поля Вселенной»
Философия и теория «Единого поля Вселенной»

Полная версия

Философия и теория «Единого поля Вселенной»

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
1 из 11

Философия и теория «Единого поля Вселенной»


Михаил Стефанович Галисламов

© Михаил Стефанович Галисламов, 2023


ISBN 978-5-0060-2838-8

Создано в интеллектуальной издательской системе Ridero

Предисловие

В 2014 г. наш однокурсник, ныне доктор технических наук, предложил своим бывшим товарищам одного курса и специальности встретиться в г. Пермь после 40 лет окончания института, называвшегося ранее Пермский политехнический. У входа в главный корпус учебного заведения 30 мая собралось около двух десятков выпускников. Закончив экскурсию по территории учебного заведения, все зашли в кафе пообщаться. Организатор встречи не подчеркивал своего положения (у него в тот момент была не малая должность), был доброжелательным и поддерживал беседу со старыми товарищами. Меня он посадил рядом с собой и бывшим куратором нашей группы, доктором технических наук П. А. Лыхиным (ныне ушедшего из жизни). С ним у нас завязалась беседа о «душе», тонких материях и устройстве мира. Первоначально П. А. выражал свои взгляды в чисто атеистическом духе. Мои убеждения были несколько иными. Он внимательно выслушал, с уважением отнесся к не типичному мировоззрению. Не согласился с пессимизмом собеседника, что мала надежда на то, чтобы быть услышанным обществом. П.А. предложил изложить концепцию в письменном виде. И добавил: «Много раз мне приходилось быть членом аттестационной комиссии по присуждению соискателю ученой степени. При защите вывешивали много графиков, таблиц, формул, а за потоком словесной „трескотни“ часто нет идеи. Из жалости к труду и времени, затраченного претендентом, голосовал „положительно“». О концепции вселенной, которая была коротко изложена, П.А. сказал, что в ней присутствует сильная, не ординарная мысль. Напутствовал словами: «Идея – скелет, вокруг которого формируется тело теории, а аргументы можно всегда найти. Не отступай и дерзай!». Перерыв над настоящей теорией на несколько лет был вынужденным, связан он с необходимостью разоблачения преступных действий США против России (работы опубликованы в бесплатном доступе). Посланные сигналы, можно предположить, не были услышаны.

Случайность – это непознанная людьми закономерность. Благодаря встрече в кафе, внимая старшему наставнику (храню светлую память о нем), не думая о трудностях, пришлось пробиваться через дебри естествознания, руководствуясь материалами древней, средневековой и современной философии. Это отступление от темы, обозначенной в заголовке, будет не полным, если не рассказать об очередном зигзаге судьбы. В тяжелом состоянии 9 января 2022 г. был госпитализирован в городскую больницу. Случайно в выходной день пришел на работу заведующий хирургическим отделением Ивченко В. В. С двумя врачами, дежурившими на смене, он зашел в палату через 5—10 минут, как только меня положили. Осмотрели, быстро поставили диагноз и назначили медикаментозное лечение. Сутками ранее от воспаления у меня лопнул желчный пузырь. Врач приемного покоя, посоветал попасть на прием к терапевту поликлиники, после окончания выходных дней. При этом в анализах, количество лейкоцитов в организме превышало норму в три раза, а в моче были обнаружены эритроциты. На следующий день (понедельник), после поступления в стационар, желчный пузырь удалили операционным вмешательством. Убежденность в том, что поставленная передо мной задача не выполнена, вселяла уверенность в благополучном исходе операции и скором выздоровлении. Хирург (Саутов М. Б.), проводивший операцию, и его ассистент (Воробьев И. В.) дали шанс, чтобы отложенную работу закончить через полтора года. За помощь в выздоровлении выражаю благодарность всему коллективу хирургического отделения больницы города Рудный.

Введение

В будничной жизни мы постоянно сталкиваемся с миром явлений. Знание о вселенной и законах природы обычно базируется на эмпирических сведениях. Объем эмпирической и теоретической информации, по мере развития естествознания, постоянно растет. Эффективность работы научно-исследовательской организации, или группы, оценивают несколькими критериями, в том числе: экономической эффективностью от внедрения НИР, количеством полученных авторских свидетельств и патентов, валютной выручкой. Наука все больше стала обезличиваться, растет количество коллективных трудов, скрывающих вклад каждого из соавторов. Многие статьи, исследовательские проекты не дают заметного прироста естествознанию. Тот, кто вступает на исхоженный путь, редко встречает что-нибудь новое и с трудом направляет свой ум на что-то необычное. Система стремится так поддерживать науку, чтобы долгие годы она оставалось тем, что есть. Люди с высокими положениями в научной иерархии создают условия к закрепощенности и косности мышления, подбирают в приемники людей с отсутствием прорывных идей и взглядами, подобными их собственным. Результатом негативного опыта угодничества, распространенного в гуманитарных научных кругах СССР, был крах идеологии, построенной на искусственных закономерностях. Широко разрекламированные, лживые труды по политэкономии социализма и теории научного коммунизма, лозунги о единстве и братстве народов национальных республик Советского Союза не сцементировали страну, а разложили ее изнутри и подготовили будущий распад. Подобный финал естествен, в нем нет ничего неожиданного. Один из тезисов, который провозгласил Поппер: центральной проблемой эпистемологии всегда была и до сих пор остается проблема роста знания. Наилучший же способ изучения роста знания – это изучение роста научного знания. Исследования американского ученого Д. Прайса показали, что расходы на науку в США растут пропорционально квадрату числа ученых, или четвертой степени числа ведущих ученых. Он пришел к выводу: прирост истинных знаний составляет все меньшую и меньшую величину, так как происходит процесс обесценивания науки за счет работ, не несущих нового знания. По затраченным средствам экспоненциальное увеличение числа научных работников приводит к снижению их творческой производительности и тормозит развитие фундаментальной науки. Минуло достаточно времени с тех пор, как открыли электричество, магнетизм, гравитационное притяжение, а суть этих явлений не установлена.

1. О затруднениях в физике

Постоянный электрический ток в проводнике – это направленное движение электронов (так трактует теория). Протоны не образуют встречного потока. Физические законы постулируют симметрию в микромире. А. Эйнштейн не понимал закономерности, которая касалась природы вещества: если поместить на одну чашу воображаемых весов все частицы, несущие положительный электрический заряд, а на другую чашу – все имеющиеся на земле частицы с отрицательным зарядом, то обнаружится разительная разница в весе этих двух чаш. Вес частицы с положительным электрическим зарядом в 1836 раз превышает вес частицы с отрицательным зарядом [1, с. 50], что противоречит закону равновесия, существующему в природе. Физические законы систематически претерпевают некоторые изменения. Вначале физики отказались от гипотезы о существовании эфира, абсолютно упругого вещества. В настоящее время применяют понятие «физический вакуум». В современной физике под физическим вакуумом понимают пространство, полностью лишенное вещества. Одновременно в фундаментальных теориях постулируют материальность гравитационного, электрического и электромагнитного полей. Ученые жонглируют свойствами, не открывая содержание этих структур. Движение Земли вокруг Солнца стало явлением, не вызывающим какого-либо интереса. Астрофизикам, да и ученым, не кажется странным, что не происходит гравитационного сближения звезды и планет. Данные по измерению потоков излучения и расстояний до сверхновых звезд и другие независимые астрономические наблюдения говорят в пользу ускоренного расширения Вселенной [2]. Следовательно, увеличивается расстояние между всеми первоначальными точками пространства. При удалении от центра, скорость расширения Вселенной, по гипотезе «Большого взрыва», должна замедляться. Почему происходит не так, астрономы объяснить не могут.

Астрофизики изучают окружающую нас Вселенную, состоящую из комет и метеорных тел, планет и их спутников, звезд, межпланетной и межгалактической среды, основываясь на результатах наблюдений за электромагнитным излучением. Астрономия изучает поступательное и вращательное движения небесных тел и применяет полученные закономерности для вычисления орбит планет, комет, и других тел (включая и искусственные). Закономерности в астрономии, как и прочих науках, недостаточно надежны для окончательных выводов. В свое время были приняты гелиоцентрическая и геоцентрическая система мира – два учения о солнечной системе, основанные на противоположных относительных движениях Земли и Солнца. Вращение любого космического объекта вокруг своей оси, или массивной звезды, – бездоказательное утверждение, его можно допустить лишь теоретически. По сути это вопрос интерпретации того, что принять в качестве неподвижного объекта. Практически все, что мы знаем о космосе, известно нам благодаря поступившим из космоса к Земле электромагнитным излучениям. При этом утверждается, что свет распространяется в вакууме с постоянной скоростью (с). Свет – это особый вид электромагнитных волн, воспринимаемый человеческим глазом. Как гласит теория, электромагнитное излучение имеет двойственную природу: обладает волновыми и корпускулярными (дискретными) свойствами. Электромагнитная волна состоит из электрической и магнитной составляющих, перпендикулярных друг другу и к направлению движения волны. Утверждается, что переменные электромагнитные поля могут существовать самостоятельно, независимо от возбудивших их электрических зарядов. [3, с. 115]. В отличие от звуковых волн и других волновых процессов, для распространения электромагнитного излучения не нужна проводящая среда. У Максвелла первоначальное мнение было иное: «С какими бы трудностями в наших попытках выработать состоятельное представление о строении эфира ни приходилось нам сталкиваться, но несомненно, что межпланетное и межзвездное пространства не суть пространства пустые, но заняты материальной субстанцией или телом, самым обширным и, нужно думать, самым однородным, какое только нам известно» [4].

На данный момент в мире не существует полной системы знаний. Поэтому ничто в естествознании не может быть признано окончательно установленным и доказанным. Физика – одна из наиболее консервативных наук об общих законах природы и материи, ее структуре и движении. В последние столетия лидирующее положение в науке занимает опытно-экспериментальный метод. Когда-то он дал положительные результаты в научно-техническом прогрессе. С течением времени эффективность от вложения средств в науку стала снижаться. Многочисленные достижения в физике группируются вокруг открытия элементарных частиц. Пока не видно, что могло бы стать драйвером ускоренного развития знания. С конца XX века фундаментальная наука топчется на месте, несмотря на солидные финансовые вливания. Плеяда ученых, генерировавшая открытия в конце XVIII и начале XIX веков, иссякла. Не появились новые талантливые физики, подобные М. Фарадею. Английский ученый не подсчитывал материальную выгоду от внедрения открытий. Они сами пробивали дорогу к практическому применению. Фарадей с глубоким уважением относился к чужому мнению, но, руководствовался собственным опытом и умом. Ученого интересовало абсолютно знание. Он не признавал то или иное суждения истинным лишь потому, что оно высказано авторитетом в научном мире.

Физики радовались, думая, что в микромире действуют законы космического пространства: отрицательные электроны вращаются вокруг атомного ядра подобно тому, как планеты вращаются вокруг Солнца. Что в одном случае давала гравитация, то в другом обеспечивалось взаимным притяжением противоположно заряженных электрических зарядов. Ученые надеялись, что в скором времени поймут строение атома и процессы, происходящие в нем. Теория не смогла продвинуться в этом направлении, при дальнейшем развитии науки. М. Планк обратил внимание на отличие в системах: электроны могут описывать лишь вполне определенные траектории, отличающиеся друг от друга дискретно. У планет никакая траектория, по сравнению с другими, не является заведомо предпочтительной [5]. Ожидание, что несоответствие удастся каким-то образом объяснить позже, не оправдалось. Сравнение движений планеты вокруг Солнца и электрона вокруг атомного ядра привело ученых к вопросу о положении электрона на орбите и скорости. Более позднее исследование показало, что в этом вопросе нет аналогии. Планк призвал сделать выводы из этого примера и в дальнейшем проявлять осторожность при формулировке какой-либо новой идеи, перенося понятия и законы из одной области в другую [6].

Убеждение, согласно которому основы научной теории имеют чисто умозрительный характер, еще не было господствующим в XVIII и XIX веках, считает Эйнштейн. По его наблюдениям, оно получало прочное основание, по мере того как в мышлении отдалялись друг от друга фундаментальные понятия и законы, с одной стороны, с теми выводами, которые должны быть сопоставлены с опытом, с другой стороны [7]. Со временем ученые стали замечать, что многие годы наука не способна давать ответы на отдельные вопросы. Гранды мировой науки (и не только), продвигавшие на олимп квантовую теорию, засомневались в справедливости установленных в физике законов. Подозрение высказывали Э. Шредингер, Луи де Бройль, П. Дирак, В. Гейзенберг, Л. Бриллюэн, Р. Фейнман и другие известные ученые. Альберт Эйнштейн в конце жизни сомневался практически во всем, что успел сделать. По их высказываниям можно понять, что беспокоило ученых.


«Нельзя надеяться, что в квантовой физике метод возмущений все-таки даст исчерпывающий ответ, если только не придерживаться того, что согласно квантовой физике не происходит ничего подобного этому и что весь ее аналитический аппарат предназначен лишь для того, чтобы сообщать нам, с какой вероятностью можно встретить систему, перепрыгивающую из одного состояния в другое, причем для отбора этих „состояний“ откровенно ставится условие, чтобы они удовлетворяли нашим требованиям удобства и доступности аналитического рассмотрения. Но это же все равно, что выдавать желаемое за действительное» [8].

Э. Шредингер

«Трудно также удержаться от подозрения, что статистический характер теории обусловлен, по-видимому, неполнотой описания и не имеет никакого отношения к природе вещей» [9].

«Кроме того, представление о фотоне как о точечной структуре не позволяет объяснить интерференционные явления, возникающие только при взаимодействии обоих пучков. … За необычайный успех этой теории пришлось платить двойной ценой: отказаться от требования причинности (ее никак нельзя проверить в атомной области) и оставить попытки описания реальных физических объектов в пространстве и времени» [10].

А. Эйнштейн

«Ни о взаимодействии электронов, которые из-за одноименности своих зарядов должны были сильно отталкиваться, ни о периоде их обращения вокруг ядра, ни о месте, в котором они находятся в разные моменты времени, нельзя было ничего сказать, ибо ни одну из этих величин нельзя было измерить ни прямо, ни косвенно. Наоборот: то, что удавалось установить путем наблюдений, свидетельствовало о необходимости нового представления о природе электрона» [5]. По мнению ученого, когда казалось, что наука достигла высшей степени совершенства, наступил кризис физического мировоззрения. По своей глубине и остроте он «превышает все предыдущие».

М. Планк

«Поиски происхождения ядерных сил приводят к новым частицам; но все эти открытия вызывают только замешательство. У нас нет полного понимания их взаимных отношений, хотя в некоторых поразительных связях между ними мы уже убедились» [11, с. 55].

Р. Фейнман

«В 1927 году Нильс Бор, один из величайших мыслителей в области атомной физики, ввел в атомную физику так называемый принцип дополнительности, который был равнозначен „отречению“ от попыток интерпретировать атомную теорию как описание чего-либо реального… Я не верю, что физики приняли бы такой принцип ad hoc, если бы понимали, что он является таковым или же представляет собой философский принцип – часть инструменталистской философии физики Беллармино и Беркли» [12].

К. Р. Поппер

Сила магнитного поля характеризуется плотностью силовых линий, т. е. их числом на единицу площади. Магнитное поле в любой точке пространства можно представить вектором В, называемым магнитной индукцией. Его величину можно определить через вращающий момент, действующий на магнитную стрелку, когда она не ориентирована вдоль магнитной силовой линии. Чем больше момент, тем сильнее магнитное поле. Магнитная стрелка находиться в равновесном состоянии, когда располагается по касательной к силовой линии в данном месте поля. Физическая сущность магнитного поля, как и электрического поля, остается до сих пор неизвестной. Вектор индукции (В) определяется опытным путем. Физиками не разработана теория взаимодействия постоянных магнитов и нет экспериментальных данных по этому взаимодействию. Эффективность от проведенных экспериментов низка, поскольку не создана теория (инструменты), позволяющая анализировать их результаты.

На современном этапе развития не до конца изучено строение атома, не выстроена цельная теория ядерных взаимодействий. Наука не научились понимать законы, господствующие во Вселенной. Мы не знаем причину движения планет, звезд и галактик. Природа упорно отказывается дать ответ о причине, побуждающей Землю двигаться вокруг Солнца. Не удается доказать инструментально и вращение планеты вокруг своей оси. Примечательны в этом отношении результаты экспериментов Майкельсона, а позже и Майкельсона – Морли, в которых скорость распространения света по направлению движения Земли сравнивали со скоростью света перпендикулярно к этому движению. В этих опытах был применен чувствительный метод измерения. Влияние движения Земли должно было отчетливо проявиться. Но ожидаемый результат не был достигнут, оказался затруднительным и даже загадочным для теоретической физики.

Не существует ли каких-либо принципиальных оснований, вследствие которых потерпели неудачу все опыты, относившиеся к механическим свойствам эфира? У М. Планка возникла мысль, нельзя ли подойти к вопросу о световом эфире с совершенно другой стороны: «Что, если световые волны распространяются в пространстве, совершенно не связанные с каким-либо материальным носителем? В таком случае скорость движения тела по отношению к эфиру была бы немыслима» [13]. Один человек мог кардинально изменить историю развития естествознания и вывести его на новый уровень, однако не случилось. Опытным путем не удалось обнаружить эфир. Планк отказывается поддерживать его присутствие в пространстве. Он предложил использовать «уравнения Максвелла—Герца для электродинамических явлений в свободном эфире или, скажем мы лучше, в пустом пространстве». Отступая от испытанного годами теоретического знания, физик-теоретик опрометчиво называет пространство «простейшей из всех сред, какую только можно себе представить», представляя его пустым.

В списке особенно важных и интересных проблем физики академик В. Л. Гинзбург выделил три «великие» проблемы, в их числе интерпретация и понимание квантовой механики. Он думает, что обсуждение основ нерелятивистской квантовой механики сохраняет известную актуальность и этим не следует пренебрегать. Значительная, если не подавляющая часть критиков квантовой механики не удовлетворена вероятностным характером части ее предсказаний. При анализе микроявлений они желают вернуться к классическому детерминизму и узнать, куда именно попадает каждый электрон в известных дифракционных опытах. Естественно желание исследователей объяснить все живое на основе уже известной физики. Гинзбург говорит [14], что переход от молекул и их комплексов к простейшим организмам, их воспроизводству можно себе представить. Но здесь имеется какой-то фазовый переход. Проблема не решена. Отправным пунктом гипотезы служит постоянство величины скорости света (с) в вакууме. Все опыты проводились в пределах Земли.

Многие теории опираются на движение планет, звезд и галактик в системе Вселенной. Космические тела, под действием сил тяготения, совершают свой ход миллиарды лет по одной и той же орбите. Насколько реалистичны постулаты, признанные научным миром? Никто же не предполагает, что в ядре универсума работает «perpetuum mobile». Чтобы заставить космические тела совершать орбитальные и вращательные движения, мирозданию потребуется невообразимый источник энергии. Небесная механика рассматривает движение материальных тел в пустоте. Предположим, что между звездами и планетами пустой космос. В данном случае перед физиками возникает ряд сложных вопросов. Какая сила удерживает орбиты космических объектов в одних и тех же точках пространства? Современная теория тяготения не может дать разумное объяснение устойчивому положению массивного тела в плоскости эклиптики и отсутствию действия силы тяжести в других направлениях. Закрадываются сомнения в достоверности действующих положений современной теории о движении звездных систем в мироздании. Будет большой скандал, если выяснится, что на протяжении сотен лет научная парадигма, принятая за основу – ошибочна. В данный момент времени в разоблачение трудно поверить, но вероятность события не так мала, как может кому-то показаться сейчас.

От ложных законов естествознания отходят вторичные законы, которые подобно кроне дерева расширяют область заблуждений. Достаточно разоблачить одну господствующую вымышленную закономерность и вера в натуральность знаний современной науки будет подорвана. Образ мнимых достижений лопнет и откроется ящик, из которого вывалятся псевдонаучные теории. Истинное знание, скрытое под спудом, разорвет порочный круг и вырвется на свободу. Подобные события происходили в прошлом, зреют в настоящем и обязательно свершатся в будущем. Задача подлинной философии заключается в том, чтобы разоблачать теоретические бессмыслицы. Чем дольше фальшивые теории сохраняют главенствующее положение, поддерживая конструкцию ложного знания, тем серьезней будут последствия от ее стремительного крушения.

2. Истечение заряженных частиц из катода

Представление о структуре электрона развивалось постепенно. Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества. В 1820 году датский физик Х. Эрстэд установил связь между электричеством и магнетизмом. В этом же году французский физик А. Ампер впервые объединил электричество и магнетизм и сформулировал законы взаимодействия электрических и магнитных полей. В 1831 году английский физик М. Фарадей открыл явление электромагнитной индукции. В начале 1859 г. Ж. Плюккер исследовал спектры разреженных газов в трубках Гейслера. Он обнаружил, что с понижением давления воздуха в трубке до 1 мм ртутного столба «фарадеево темное пространство» увеличивается, а свечение вокруг катода становится более протяженным [15]. К концу XIX века были установлены следующие закономерности: 1) лучи испускаются катодами, когда через разреженное пространство трубки проходит ток; 2) лучи распространяются прямолинейно; 3) лучи отклоняются магнитным полем. В 1895 г. Плюккер сообщил об опыте, который доказывал, что катодные лучи переносят отрицательный электрический заряд.

Большой вклад в изучение катодных лучей внес английский физик сэр У. Крукс. При пропускании тока довольно высокого напряжения через атмосферный воздух, заключенный в трубке длиной 15—20 см при нормальном давлении, не наблюдалось ни искрового, ни тлеющего разряда. Ученый провел эксперименты с электрическим разрядом в трубках при низких давлениях газа. Достаточно было удалить часть воздуха из трубки, в ней начинался тлеющий разряд при неизменной разности потенциалов и при отсутствии внешних ионизаторов. Крукс наблюдал свечение стеклянной трубки при очень низких давлениях газа. Цвет сияния зависит от химической природы газа. Сияние прерывалось темными полосами. Эти полосы были особенно заметны при давлении приблизительно в одну тысячную атмосферы. Создавая в трубке высокую степень разреженности, ученый мог изучать темное пространство, которое при таких условиях появляется между катодом и катодным свечением. Согласно Круксу, пространство остается темным потому, что столкновение и свечение происходит в светлом пространстве. Он полагает, что частицы начинают светиться только после столкновения с другими частицами, в результате которого они теряют часть своей скорости. Крукс сумел доказать, что катодные лучи, ведут себя как электрические токи и оказывают механическое и тепловое воздействие на препятствие. В 1879 году английский физик У. Крукс рассматривал катодные лучи, как молекулярную лавину. Он обнаружил, что два соседних пучка катодных лучей отталкиваются; позднее отклонение лучей объяснили причинами, не связанными с взаимным отталкиванием. Ученый говорил о катодных лучах как о «четвертом состоянии» материи (плазмы). На основании результатов опытов у него сложилось впечатление, что имеет дело с частицами материи, лежащими в основе физики Вселенной [16, с. 150].

На страницу:
1 из 11