bannerbanner
Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное
Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Полная версия

Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
8 из 14

где

1 – монолит в твердом состоянии;

2 – монолит в гибком состоянии;

A – вещество с одной полостью;

B – вещество со многими полостями;

C – КПМ;

D – µКПМ;

КПМ – капиллярно-пористый материал;

µКПМ – микро-КПМ.


На этапах A и B используются макро-полости, а на C и D – капилляры.

Отличие этапов A от B и C от D в размерах полостей и капилляров, соответственно.

Разметы полостей от этапа (A) могут быть сотни метров, десятки метров до метра. На этапе (B) размеры ячеек измеряются десятками сантиметров, сантиметрами или миллиметрами, но не метрами.

Переход от состояния 1 (2) к A, как правило, идет скачком.

Переходы от A к B, от B к C и от C к D осуществляются постепенно. Переход от A к B показан на рис. 5.50.

A1 – вещество с одной полостью,

A2 – вещество с двумя полостями,

A3-A4 – вещество со многими полостями,

В – вещество со многими маленькими полостями.


Рис. 5.50. Закономерность дробления полости


Общая закономерность при движении от A к D и на каждом этапе в отдельности: количество полостей увеличивается, а их размеры уменьшаются.

Управление капиллярно-пористыми материалами (КПМ) в процессе их использования осуществляется по следующей закономерности (рис. 5.51).

1. Полость.

2. Структурированная полость (полость, имеющая определенную структуру).

3. Полость, заполненная веществом.

4. Воздействие на введенное в полость вещество полями с использованием различных технологических эффектов ТЭ (физических, химических, биологических и геометрических).


Рис. 5.51. Управление капиллярно-пористыми материалами (КПМ)


где

# – структура полости,

В – вещество,

ТЭ – технологический эффект.


Эта закономерность характерна для каждого из этапов A—D.

Структурирование, заполнение веществом и использование технологических эффектов возможны для любых размеров и любого количества полостей, в том числе и одной.

Структурирование полостей осуществляется:

– созданием перегородок определенной формы;

– созданием ячейки определенной формы, из которых собирается общая структура.

Полости могут заполняться веществом. Это вещество может быть газообразным, жидким, гелеобразным и твердым, которое под воздействием различных полей может, например, увеличивать объем, а, следовательно, и создавать давление.

При этом используются разнообразные технологические (физические, химические, биологические и геометрические) эффекты.

На этапах A и B используются следующие технологические эффекты:

– физические:

избыточное давление (пневмо- и гидро), тепловое расширение, фазовые переходы первого и второго рода, в том числе эффект памяти формы, изменение кажущейся плотности магнитной и реологической жидкости в магнитных и электрических полях, действие магнитного поля на ферромагнитное вещество, центробежные силы, взрывчатые вещества, электрогидравлический удар;

– химические:

разложение гидратов и газогидратов, разбухание металлов при разложении жидкого озона, перевод в химически связанный вид, транспортные реакции, перевод в гидратное состояние, растворение в сжатых газах, перевод в гидриды, в экзотермических реакциях, в термохимических реакциях, растворение, разбухание геля.

– геометрические:

использование различных форм: треугольников, пятиугольников, шестиугольников, кругов, их частей (сегментов), гиперболических параболоидов, эллипсоидов, сфер и полусфер, конусов, сотовых конструкций.

Для придания большей прочности конструкций, полости заполняют жидкостями, гелями, сыпучими материалами, пластмассами и т. д.

Этап С представляет собой качественный скачок – переход на микроуровень, т.е. использование капиллярно-пористых материалов (КПМ).

Переход к капиллярной структуре изменяет требования к структурированию ячеек и использованию технологических эффектов.

В КПМ могут использоваться структуры с открытыми и закрытыми капиллярами различных размеров и направлений.

Из технологических эффектов на этапах C и D, прежде всего, используются капиллярные эффекты.

Наиболее известные из капиллярных эффектов: ультразвуковой капиллярный эффект, термокапиллярный эффект, электрокапиллярный эффект, геометрический капиллярный эффект.


Капилляр – это трубка с малым внутренним диаметром.

Капиллярные явления (от лат. Capillaris – волосяной), физические явления, заключающиеся в способности жидкости изменять уровень в капилляре.

Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например, воды в стеклянных трубках, песке, грунте и т. п.

Понижение жидкости происходит в капиллярах, не смачиваемых жидкостью, например, ртуть в стеклянной трубке.

Это явление обусловлено действием поверхностного натяжения на границе раздела несмешивающихся сред.

Ультразвуковой капиллярный эффект: увеличение в десятки раз скорости движения и высоты подъема жидкости в капиллярах при непосредственном воздействии ультразвука (рис. 5.52а). На рисунке стрелкой условно показано воздействие ультразвука (УЗ) на капилляр. При воздействии УЗ жидкость в капилляре поднимается на высоту h1 большую, чем в капилляре без воздействия h2 (h1> h2).


Рис. 5.52. Капиллярные эффекты


Действие термокапиллярного эффекта аналогично ультразвуковому капиллярному эффекту – увеличение скорости и высоты подъема жидкости при наличии в капилляре разности температур (рис. 5.52б). На рисунке стрелкой условно показано воздействие температуры (То) на капилляр. Наверху капилляра температура выше, чем внизу. Это условно показано знаком плюс (+То). Жидкость в капилляре течет в сторону большей температуры и поднимается на высоту h1 большую, чем в капилляре без воздействия h2 (h1> h2).

Электрокапиллярный эффект – зависимость поверхностного натяжения на границе раздела твердых и жидких электродов с растворами электролитов и расплавами ионных соединений от электрического потенциала. Эта зависимость обусловлена образованием двойного электрического слоя на границе раздела фаз.

Воздействие электрического потенциала (+U, -U) к капилляру условно показано стрелками (рис. 5.52в). Электрический ток заставляет жидкость течь в капилляре в определенном направлении и поднимается на высоту h1 большую, чем в капилляре без воздействия тока h2 (h1> h2). Приложение потенциала зависит от вида жидкости.

Изменением потенциала можно осуществлять инверсию смачивания – переход от несмачивания к смачиванию и наоборот56.

Геометрический капиллярный эффект – это условное название явления (название дал автор), при котором жидкость течет в сторону меньшего диаметра капилляра (рис. 5.52 г). Диаметр верхнего конца капилляра d2 меньше диаметра нижнего конца капилляра d1 (d1> d2). На рисунке утрированно показано сужение капилляра. В сужающемся капилляре жидкость поднимается на высоту h1 большую, чем в ровном капилляре h2 (h1> h2).

Изменить диаметр капилляра можно, например, если сделать его из материала с эффектом обратимой памяти формы. Тогда можно управлять движением жидкости.

Управлять процессами, происходящими в капиллярах, можно, изменяя вязкость и смачивание жидкости всеми известными способами, в том числе и химическими, например, использование поверхностно-активных веществ. Кроме того, можно использовать ферромагнитную или реологическую жидкости и магнитное или электрическое поля.

Наиболее эффективно применение сочетаний описанных эффектов для управления процессами, происходящими в капиллярах.

Помимо указанных ранее эффектов, в линии перехода к КПМ применяются осмос и электроосмос, эффекты, связанные с сорбцией и хемосорбцией (капиллярная конденсация, фотоадсорбционный эффект, влияние электрического поля на адсорбцию, адсорблюминисценция и хемолюминисценция, радикально-рекомбинационная люминесценция, адсорбционная эмиссия, влияния адсорбции на электропроводимость полупроводника).

Выше были описаны три линии развития КПМ (см. рис. 5.49, 5.50, 5.51):

1. Монолит твердое (1) или эластичное (2) → Вещество с одной полостью (A) → Вещество со многими полостями (B) → КПМ (C) → µКПМ (рис. 5.52а).

2. Полость → Структурированная полость → Полость, заполненная веществом → использование технологических эффектов ТЭ (рис. 5.52б).

3. Вещество с одной полостью A1→ вещество с двумя полостями A2 → вещество со многими полостями A3-A4 (рис. 5.52в).

Они представлены вместе на рис. 5.53.


Рис. 5.53. Линии развития капиллярно-пористого материала (КПМ)


В общем виде система развивается по всем трем направлениям, а все состояния могут быть описаны в виде морфологической матрицы, где в качестве морфем, помимо указанных трех составляющих может быть еще четвертая – виды технологических эффектов.

В упрощенном виде эту закономерность можно представить в виде схемы (рис. 5.54).


Рис. 5.54. Общая схема перехода к КПМ


Где

КПМ# – КПМ со структурированными капиллярами,

µКПМ# – µКПМ со структурированными капиллярами.

Структура полостей (ее форма) определяется функцией, которую должен выполнять данный материал или конструкция.

Например, для функции устойчивость часто делают перегородки в форме треугольников, пятиугольников, шестиугольников, кругов, их частей или других геометрических фигур. Наиболее часто встречаются полости в форме гиперболического параболоида, эллипсоидов, сфер и полусфер, конусов, сотовых конструкций.

Эти формы могут использоваться и для других функций.


5.3.6. Уменьшение степени управляемости


Закономерность уменьшения степени управляемости указывает на тенденцию создания простых приспособлений без механизации и автоматизации. Эта закономерность противоположена закону увеличения степени управляемости.


5.3.7. Закономерность увеличения степени динамичности


Определения


Развитие системы идет в направлении увеличения степени динамичности.

Динамичная система может изменять свои параметры, структуру (в частности форму), алгоритм, принцип действия и функции, чтобы наиболее эффективно достичь поставленную цель и удовлетворить потребность. Динамическая система в своем развитии может менять так же цель и потребность, приспосабливаясь к внешним и внутренним изменениям.

Изменения могут происходит:

– во времени;

– по условию.


Следствия из закономерности.

1. Статические системы стремятся стать динамическими.

2. Системы развиваются в сторону увеличения степени динамичности.


Основная линия увеличения степени динамичности


Увеличение динамичностипроисходит изменением динамичности параметров, структуры, алгоритма и принципа действия, функции, потребности и цели, которое может происходить во времени, в пространстве и по условию.

Степень динамичностиувеличивается переходом от изменения динамичности параметров к изменению динамичности структуры, алгоритма, принципа действия, функции, потребности и цели.

Основная линия увеличения степени динамичности показана на рис. 5.55.


Рис. 5.55. Линия увеличения степени динамичности


Изменение параметров


Изменение параметров системы – это наиболее простой способ увеличения степени динамичности системы с целью ее адаптации к внутренним и внешним изменениям.

Изменяться может любой параметр системы, например, электрические параметры (величина тока, напряжения, сопротивления и т. д.), оптические параметры (длина волны, яркость, освещенность и т. д.), акустические параметры (амплитуда и частота звука и т. п.), механические параметры (эластичность, жесткость, вязкость, число степеней свободы и т. д.) и т. д.


Изменение структуры


Увеличение степени динамичности системы может осуществляться путем изменения структуры системы – это более сложный способдинамизации, чем изменение параметров.

Под изменением структуры мы понимаем и изменение формы объекта.


Изменение алгоритма


Увеличение степени динамичности системы может осуществляться путем изменения алгоритма работы.


Изменение принципа действия


Увеличение степени динамичности системы может осуществляться путем изменения ее принципа действия.


Изменение функции


Увеличение степени динамичности системы может осуществляться путем изменения выполняемой функции.


Изменение потребностей


Увеличение степени динамичности системы может осуществляться путем изменения потребностей.


Изменение целей


Увеличение степени динамичности системы может осуществляться путем изменения целей.


Повышение динамичности


Система тем динамичнее, чем она более управляемая.

Динамичность системы повышается с увеличением скорости и точности адаптации к внешним и внутренним изменениям.

Скорость увеличения динамичности повышается с учетом изменений не только определенного параметра, а и его производных.

Идеально, когда система заранее готова к изменениям, т. е. имеет способность заранее прогнозировать изменения. С этой целью система должна использовать и/или выявлять и использовать тенденции, закономерности и законы развития системы, надсистемы и окружающей среды.

Точность адаптации может быть увеличена, если в законе управления системой учитывается интеграл от всех изменений или ведется учет предыдущих изменений.


Динамическая статичность


Статические системы достаточно устойчивы, но не мобильны. Мобильные системы часто не устойчивы. Для придания системе максимальной мобильности и устойчивости ее выполняют динамически статичной.

Динамическая статичность системы осуществляется за счет постоянного управления максимально мобильной системой. Такие системы называют с динамической устойчивостью.


5.3.8. Тенденция уменьшения динамичности


В отдельных случаях можно говорить о тенденции уменьшения динамичности – повышения статичности. Система стремится сохранять, не изменять, стабилизировать свои параметры, структуру (в частности форму), алгоритм и принцип действия, функции, чтобы наиболее эффективно достичь поставленной цели и удовлетворить потребности. Кроме того, статичная система стремится сохранить так же цели и потребности.

Стабилизация должна происходить во времени и/или в пространстве и/или по условию.

Название тенденции «уменьшение динамичности» условное. По существу, эта тенденция частный случай динамических системы, обеспечивающих постоянство параметра, структуры, функции, потребности, цели и т. д.

Динамическую статичность можно тоже рассматривать как частный случай тенденции уменьшения динамичности.

Существует много разновидностей систем, где необходимо поддерживать параметры стабильными (постоянными) – определенной величины. В качестве параметров можно указать, например, частоту, температуру, давление, натяжение, прочность и т. д.

Тенденция уменьшения степени динамичности (увеличения статичности) используется для развития систем, в которых необходимо стабилизировать определенные параметры или всю систему в целом.

Для динамизации системы используется закон увеличения степени динамичности.

5.4. Закономерность согласования – рассогласования

5.4.1. Общие представления


Закономерность согласования—рассогласования является основной из закономерностей эволюции систем. Структура этих закономерностей показана на рис. 5.56.


Рис. 5.56. Структура закономерности эволюции систем


Закономерность согласования—рассогласования включает две закономерности (рис. 5.57).

1. Закономерность согласования.

2. Закономерность рассогласования.


Рис. 5.57. Закономерность согласования – рассогласования


5.4.2. Структура закономерности согласования—рассогласования


Согласование—рассогласование проводится для недопущения вредных явлений или усиления полезных.

Закономерность согласования, которая будет изложена ниже, была сформулирована В. Петровым в 1975–1978. Закономерность рассогласования был предложена Э. Злотиной, а развита Б. Злотиным.

Опишем структуру закономерности согласования—рассогласования (рис. 5.58).

1. Объекты согласования—рассогласования.

1.1. Потребности.

1.2. Функции.

1.3. Принцип действия.

1.4. Система.

1.4.1. Структура:

– элементы;

– связи;

– форма;

– вещество.

1.4.2. Параметры.

1.4.3. Потоки.

1.5. Надсистема.

1.6. Окружающая среда.

1.7. Поля.

1.7.1. Энергия.

1.7.2. Информация.

– данные;

– знания.

2. Способы согласования—рассогласования.

2.1. Во времени.

2.2. В пространстве.

2.3. По условию.

2.4. Статическое (постоянное).

2.5. Динамическое (переменное).


Рис. 5.58. Структура закономерности согласования – рассогласования


Закономерность согласования—рассогласования является общей из закономерностей эволюции систем.

Принцип действия должен согласовываться с главной функцией, внешней средой, надсистемой и системой.

Процесс согласования принципа действия с главной функцией системы – это обеспечение этой функции, т. е. это выбор принципа действия рабочего органа.

5.5. Закономерность перехода в надсистему или подсистему

5.5.1. Общие представления


Закономерность перехода системы в надсистему и/или подсистему является основной из закономерностей эволюции систем. Структура этих законов показана на рис. 5.59.


Рис. 5.59. Структура закономерностей эволюции систем


Закономерность перехода в надсистему или подсистему включает две закономерности (рис. 5.60).

1. Закономерность перехода в надсистему.

2. Закономерность перехода в подсистему.


Рис. 5.60 Закономерность перехода в надсистему или подсистему

5.5.2. Закономерность перехода системы в надсистему

Закономерность перехода системы в надсистему разработан Г. Альтшуллером57. Он ее сформулировал следующим образом:

«Исчерпав ресурсы развития, система объединяется с другой системой, образуя новую, более сложную систему».

Системы объединяются в надсистему не только, когда исчерпали ресурсы своего развития, поэтому мы переформулировали эту закономерность.

Системы объединяются в надсистему, образуя новую более сложную систему.

Объединение систем в надсистему может проходить двумя путями (рис. 5.61):

– Объединение в новую более сложную систему, имеющую одну функцию (монофункциональная система);

· Переход системы от монофункцинальной к полифункцинальной.


Рис. 5.61. Закономерность перехода в надсистему


Переход системы от монофункционаьной к полифункционаьной первоначально осуществляется выявлением более общей функции, а затем придания дополнительных функций, при этом часто использует новые технологии.

Тенденция объединения элементов

Системы объединяются по определенной тенденции. Опишем ее (рис. 5.62).

Первоначально имеется одна – моносистема. Далее объединяют две исходные системы, при этом получатся бисистема. На следующем этапа объединяют три и более систем, образуется полисистема. Следующий этап развития, когда би- и/или полисистемы образуют новую единую систему (моносистему), которая выполняет все функции, входящих в нее систем. Эта операция называется свертыванием.


Рис. 5.62. Тенденция объединения систем


Переход «моно-би-поли» – неизбежный этап в развитии всех систем.

После объединения систем в би- или полисистему происходит некоторое изменение новой системы, требующие согласования составных частей и параметров системы. При этом сокращаются вспомогательные элементы, и устанавливается более тесная связь между отдельными системами. Такие системы называются частично свернутыми. Дальнейшее развитие приводит к полностью свернутым системам, в которых один объект выполняет несколько функций.

Полностью свернутую систему можно представить, как новую моносистему. Ее дальнейшее развитие связано с движение по новому витку спирали. Иногда в качестве новой моносистемы может выступать частично свернутая система.


Механизмы объединения элементов


Создание надсистемы путем объединения в би- и полисистему может включать следующие виды элементов (рис. 5.63).

1. Однородные

1.1. Одинаковые.

1.2. Однородные элементы со сдвинутыми характеристиками.

2. Неоднородные

2.1. Альтернативные (конкурирующие).

2.2. Антагонистические – инверсные (элементы с противоположными свойствами или функциями).

2.3. Дополнительные.


Рис. 5.63. Схема механизма тенденции перехода МОНО-БИ-ПОЛИ


Полностью схема закономерности перехода системы в надсистему представлена на рис. 5.64.


Рис. 5.64. Общая схема объединения систем


Объединение производится таким образом, что полезные (необходимые) качества отдельных элементов складываются, усиливаются, а вредные взаимно компенсируются или остаются на прежнем уровне. Объединение такого типа возможно, как для достаточно высокоразвитых систем, как и для простых элементов.

На страницу:
8 из 14