bannerbanner
Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное
Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Полная версия

Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
4 из 14

1.10.4. Отрицательно не влиять на окружение


Отсутствие учета таких влияний может не только отрицательно сказаться на работоспособности системы, но и вредно влиять на окружающие системы, надсистему и внешнюю среду.


1.10.5. Учет закономерностей развития


Системность так же учитывает и закономерности исторического развития исследуемого объекта. Это последнее требование системности. Оно учитывается при прогнозировании развития объекта исследования путем учета выявленных тенденций исторического и логического развития данного объекта, и учета общих законов развития систем. В результате получают общую тенденцию развития исследуемого объекта и концептуальное представление его следующих поколений.

Глава 2. Структура законов и закономерностей развития систем

Только тогда можно понять сущность вещей, когда знаешь их происхождение и развитие.

Гераклит Эфесский(544—483 гг. до н. э.)древнегреческий философ

2.1. Общая структура законов и закономерностей развития систем

Система законов и закономерностей разбита на безусловные и небезусловные. Безусловные будем называть законами, а небезусловные – закономерностями. Безусловные – это те, не соблюдение которых приводит к неработоспособности системы. Небезусловные – это закономерности, которые реализуются только в определенных условиях, а при других условиях могут и не реализоваться.

Развитие любых объектов материального мира, природы, различных областей знаний, деятельности и мышления происходит по своим определенным законам.

Законы носят объективный характер, выражая реальные отношения вещей, а также их отражение в сознании.

Закономерности могут иметь и противоположные тренды и в зависимости от конкретных условий могут использоваться тренд или его противоположность анти-тренд.


Законы и закономерности развития систем могут быть:

– Всеобщие это универсальные законы, справедливые для любой системы независимо от ее природы, вследствие единства материального мира. Самые общие из них – законы диалектики и закономерность S-образного развития;

– Законы и закономерности развития систем, присущие для всех антропогенных систем;

Структура законов и закономерностей развития систем представлена на рис. 2.1.


Рис. 2.1. Структура законов и закономерностей развития

2.2. Структура закономерностей развития систем

Законы и закономерности развития систем определяют требования к построению и развития систем.

Общее направление развития систем идет в сторону увеличения степени системности.

Законы и закономерности развития систем можно разделить на две группы (рис. 2.2):

– законы построения систем (определяющие работоспособность системы);

– закономерности эволюции систем (определяющие развитие систем).


Рис. 2.2. Схема закономерностей развития систем


Законы построения систем должны обеспечивать требования системности:

– предназначение;

– работоспособность.

Закономерности эволюции систем должны обеспечивать другие требования системности:

– конкурентоспособность;

– не влиять отрицательно на окружение;

– учитывать закономерности развития систем.

Структура законов построения систем будут изложены в главе 4, а закономерности эволюции в главе 5.

Глава 3. Всеобщие законы и закономерности развития

систем

3.1. Законы диалектики

3.1.1. Структура законов диалектики


Наиболее общие из законов диалектики, следующие:

– закон перехода количественных изменений в качественные;

– закон единства и борьбы противоположностей;

– закон отрицания отрицания;

Структура законов диалектики показана на рис. 3.1.


Рис. 3.1. Структура законов диалектики


3.1.2. Закон перехода количественных изменений


Закон перехода количественных изменений в качественные вскрывает общий механизм развития.

В процессе развития количественные изменения в системе происходят непрерывно. При достижении определенного предела совершаются качественные изменения. Новое качество ускоряет темпы роста.

Количественные изменения при этом совершаются постепенно (эволюционно), а качественные – скачком (революционно). Характер и продолжительность скачка могут быть разнообразными – длительными и кратковременными, бурными и относительно спокойными, с взрывом и без него и т. д.


3.1.3. Закон единства и борьбы противоположностей


Закон единства и борьбы противоположностей заключается в том, что все сущее состоит из противоположных начал, которые, будучи едиными по свое природе, находятся в борьбе и противоречат друг другу (пример: день и ночь, горячее и холодное, черное и белое, зима и лето, молодость и старость и т. д.).


3.1.4. Закон отрицания отрицания


Суть закона отрицания отрицания заключается в том, что процесс поступательного развития происходит в три стадии:

– исходное состояние системы;

– отрицание этого состояния и переход в другое состояние;

– отрицание данного состояния (отрицание отрицания) и возврат к исходному состоянию, но, как правило, на более высоком уровне с применением новых принципов действия, элементов, материалов, технологий и т. д.

Процесс развития происходит с относительной повторяемостью, как бы по пройденным ступеням – по спирали.

3.2. Закономерность S-образного развития

3.2.1. Общие понятия


Любая система проходит несколько этапов своего развития. Эти этапы графически можно представить в виде кривой (рис. 3.2).


Рис. 3.2. S – образная кривая роста

Где P – параметр системы, t – время


В качестве параметра «P» могут быть, прежде всего, главные характеристики системы, например, размеры, скорость, мощность, количество проданных товаров, продолжительность жизни, численность населения, количество популяций и т. д.

Вначале система развивается медленно (этап I), при достижении некоторого уровня развитие ускоряется (этап II) и после достижения некоторого более высокого уровня скорость роста уменьшается и в конечном итоге рост параметра системы прекращается (этап III). Это этап стагнации, который может продолжиться очень долго. Иногда параметры начинают уменьшаться (этап IV) – система умирает (на графике это изображено пунктирной линией).

Подобные кривые часто называют S—образными или логистическими (логиста).

Иногда этапы жизненного цикла можно представить в виде шляпе-образной кривой (рис. 3.3). Практически это представление полностью показывает этап IV.


Рис. 3.3. Шляпе-образной кривая развития

Где P – параметр, t – время


3.2.2. Огибающие кривые


Прекращение роста данной системы не означает прекращение прогресса в этой области. Появляются новые более совершенные системы – происходит скачок в развитии. Это типичный пример проявления закона перехода количественных изменений в качественные (п. 3.1.2). Такой процесс изображен на рис. 3.4.


Рис. 3.4. Скачкообразное развитие систем


На смену системе 1 приходит 2. Скачкообразное развитие продолжается – появляются системы 3, 4 и т. д. (рис. 3.5).


Рис. 3.5. Огибающая кривая


Общий прогресс можно показать при помощи касательной к данным кривым (пунктирная линия) – так называемой огибающей кривой35.

Развитие любого вида систем может быть примером, подтверждающим эту закономерность.

Детально всеобщие законы и закономерности развития систем будут изложены в томе 2.

Глава 4. Законы построения систем

4.1. Структура законов построения систем

Законы построения предназначены для создания новой работоспособной системы.

Работоспособная система:

‒        отвечает ее предназначению (т. е. выполняет главную функцию системы);

‒        имеет определенную структуру;

‒        структура обеспечивает свободное прохождение необходимых потоков;

‒        система минимально согласована.

Необходимым условием принципиальной работоспособности системы является обеспечение ее предназначения и наличие основных работоспособных частей и связей системы.

В связи с этим группа законов построения систем включает (рис. 4.1):

– закон соответствия;

– закон полноты и избыточности системы;

– закон проводимости потоков;

– закон минимального согласования.


Рис. 4.1. Структура законов построения систем

4.2. Закон соответствия

Закон соответствия обеспечивает системное требование предназначение. Этот закон говорит о необходимости соблюдения соответствия структуры главной функции системы.

Структура системы должна обеспечивать выполнение главной функции системы, удовлетворяя определенную потребность. Для обеспечения работоспособности структура системы должна так же выполнять все основные и вспомогательные функции. Структура обеспечивает необходимый набор элементов, связей и взаимодействий между ними. Связи обеспечивают единство системы и возможность прохода потоков.

4.3. Закон полноты и избыточности

4.3.1. Общая информация


Разработка новой системы должна начинаться с определения всех системных свойств. Прежде всего, начинают с функциональности системы.

Полнота и избыточность могут быть функциональными и структурными.


4.3.2. Закономерность полноты


Полнота может быть функциональной и структурной.


Функциональная полнота

Функциональная полнота должна обеспечивать генеральную цель и главную функцию системы, и выполнять все основные и вспомогательные функции, т. е. выполнять одно из требований системности – предназначение.

Функциональную полноту можно рассматривать и как закон функциональной полноты.


Структурная полнота

Структурная полнота должна обеспечить другое требование системности – работоспособность (часть жизнеспособности). Это обеспечивается наличием необходимых элементов (частей) и связей системы, т. е. обеспечение состава и структуры системы.

Структурную полноту можно рассматривать и как закон структурной полноты системы

Элементы могут быть:

– вещественные;

– энергетические;

– информационные.

Они должны содержаться в необходимом количестве и обеспечивать определенное качество.

К вещественным элементам относятся, например, все механические части, в частности корпус.

К энергетическим элементам относятся топливо, источники и преобразователи различных видов энергии.

К информационным элементам могут, например, относиться элементы системы управления, обработки, хранения и передачи информации.

К основным частям (элементам) системы относятся (рис. 4.2):

– рабочий орган;

– источник и преобразователь вещества, энергии и информации;

– связи;

– система управления.


Рис. 4.2. Основные элементы системы


К основным частям системы можно отнести и корпус. Он не является минимально необходимым. Отдельные системы могут обходиться и без него, но большинство систем имеют корпус.

Существуют виды технических систем, где корпус является минимально необходимым, например, судно. В водоизмещающих суднах корпус выполнят функцию удержания на плаву.

Набор всех основных частей системы представлен на рис. 4.3.


Рис. 4.3. Основные элементы технической системы


Это минимально необходимый набор частей системы, который обеспечивает ее работоспособность.


Рабочий орган


Рабочий орган (иногда его называют «исполнительный элемент» или «инструмент») выполняет главную функцию системы. Именно рабочий орган непосредственно взаимодействует с изделием, для которого предназначена данная система.

Остальные части системы предназначены для обеспечения работоспособности рабочего органа.


Источник и преобразователь


Существуют разнообразные источники вещества, энергии и информации.

Имеются природные и искусственные источники вещества. К природным источникам вещества можно отнести, например, полезные ископаемые, древесину и т. д., а к искусственным – полученные в результате направленной деятельности человечества.

Среди источников энергии можно назвать, например, солнце, ветер, электричество, топливо и т. д.

Источники энергии могут быть внешние, внутренние и смешанные.

Источники информации могут быть:

– по виду поля: звуковые (акустические); электромагнитные, включающее электрическое и магнитное поля и весть спектр электромагнитных излучений (радиоволны, терагерцовые, инфракрасные – включая тепловые, видимый свет, ультразвуковые, рентгеновские и жесткие); вкусовые; запаховые; тактильные и т. д.;

– по виду хранения: наскальные, письменные (книги, журналы, газеты и т. д.), электронные (все виды запоминающих устройств, Интернет и т. д.), произведения искусств и т. п.

Известны различные преобразователи вещества, энергии и информации.

К преобразователям вещества можно отнести химические реакции, электричество (например, электролиз, гальванопластика и т. д.), нанотехнологии

и т. д.

Среди преобразователей энергии можно назвать двигатели, генераторы, трансформаторы, выпрямители, преобразователи частоты, химические реакции и т. д.

Преобразователи информации существуют для каждого из видов информации, их источников и хранения. В информационных системах используют компьютерные способы преобразования информации.


Связи


Связи должны обеспечивать:

подвод необходимых и достаточных:

– веществ;

– энергии;

– информации;

организацию потоков (вещества, энергии и информации);

обеспечение системных свойств;

отсутствие вредных воздействий (вредных потоков):

– внутренние не должны осуществлять вредных воздействий между элементами системы (вредные потоки);

– внешние связи не должны осуществлять вредных воздействий системы на надсистему, окружающую среду и противостоять вредным воздействиям окружающей среды и надсистемы на систему (вредные потоки).

Связи можно разделить по признакам.

1. Уровень взаимодействия:

– внутренние связи;

– внешние связи.

2. Вид связей:

– вещественные;

– энергетические;

– информационные.

3. Полезность:

– полезные связи;

– бесполезные связи;

– вредные связи.

4. Наличие:

– присутствующая связь;

– отсутствующая связь.

5. Временные характеристики:

– постоянная связь;

– временная связь;

– динамическая связь.

6. Вид контакта:

– контактные;

– бесконтактные.

Внутренние связи – это связи внутри системы. Один из видов внутренних связей – это сборка элементов системы в корпусе.

Внутренние связи в системе необходимы для:

– построения структуры системы;

– определения внутренней функциональности системы;

– выявления нежелательных и вредных воздействий в системе.

Внешние связи – это связи с надсистемой, включая изделие, для которого предназначена система, и связи с внешней средой (включая все окружающие системы). Связь с объектом должна обеспечивать выполнения главной функции системы.

Внешние связи системы определяют работоспособность системы при взаимодействии с надсистемой и внешней средой и отсутствие отрицательных внешних воздействий на них. Система должна оставаться работоспособной при воздействии расчетных (заранее заданных) внешний воздействий.

Вещественные связи – это контактные связи, чаще всего механические, например, соединение деталей в корпусе, соединение проводов, труб, трансмиссии и т. д.

К энергетическим связям могут быть отнесены, например, электрические провода и кабели, топливные трубопроводы, бесконтактная передача энергии, например, индукционная и т. д.

К информационным связям могут быть отнесены, например, провода, по которым осуществляется передача информации, контроль и управление, все виды беспроводной связи и т. д., и т. п.

Полезные связи обеспечивают выполнение полезных функций.

Бесполезные связи – это, как правило, лишние связи, не создающие полезной работы и не выполняющие полезные функции. Это избыточные связи, которые желательно устранить.

Вредные связи – это связи, создающие вредные действия (вредные функции). Этот вид связей необходимо устранять в первую очередь.

Отсутствующая связь возникает в случаях, когда при проектировании не учли какую-то полезную связь или после проектирования, возникла необходимость в новой связи, а она не предусмотрена. Такую связь мы называет отсутствующей.

Постоянная связь – это связь, которая не меняется в процессе работы системы, например, связь элементов в корпусе.

Временная связь – это связь, которая со временем исчезает, например, стрела имеет связь с луком только во время прицеливания.

Динамическая связь – это связь, изменяющаяся во времени, например, в телефоне имеется связь с абонентом только во время разговора, потом она отключается. При необходимости эта связь может быть восстановлена. Практически в любом электронном приборе, транзистор подключает и отключает сигнал.

Контактные связи осуществляются с помощью веществ – вещественные связи (механические соединения, трубопроводы, провода и т. п.).

Бесконтактные связи осуществляются с помощью полей (весь диапазон электромагнитных излучений: радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновские и гамма-излучения; электрическое и магнитное поля; звуковые поля и т. д.).


Система управления


Система управления обеспечивает функции контроля и управления объектом.


Историческая справка


Хотелось бы напомнить, как развивалось понятие «техническая система» начиная с 19 века.

В 1843 г. В. Шульц описал прототип закона полноты частей системы. Он писал, что «можно провести границу между орудием и машиной: заступ, молот, долото и т. д., системы рычагов и винтов, для которых, как бы искусно они ни были сделаны, движущей силой служит человек… все это подходит под понятие орудия; между тем плуг с движущей его силой животных, ветряные мельницы следует причислить к машинам»36.

Чуть позже некоторые законы развития техники были описаны К. Марксом и Ф. Энгельсом.

К. Маркс описал эти законы в разделе «Развитие машин»37: «… различие между орудием и машиной устанавливают в том, что при орудии движущей силой служит человек, а движущая сила машины – сила природы, отличная от человеческой силы, например, животное, вода, ветер и т. д.»38. Далее К. Маркс пишет: «Всякое развитое машинное устройство состоит из трех существенно различных частей: машины—двигателя, передаточного механизма, наконец, машины-орудия, или рабочей машины. Машина-двигатель действует как движущая сила всего механизма. Она или сама передает свою двигательную силу или как паровая машина, калорическая машина, электромагнитная машина и т. д., или же получает импульс извне, от какой-либо готовой силы природы, как водяное колесо от падающей воды, крыло ветряка от ветра и т. д. Передаточный механизм, состоящий из маховых колес, подвижных валов, шестерен, эксцентриков, стержней, передаточных лент, ремней, промежуточных приспособлений и принадлежностей самого разного рода, регулируют движения, изменяет, если это необходимо, его форму, например, превращает из перпендикулярного в круговое, распределяет его и переносит на рабочие машины. Обе эти части механизма существуют только затем, чтобы сообщить движение машине-орудию, благодаря чему она захватывает предмет труда и целесообразно изменяет его. … Первоначально „машина-орудие“ (рабочая машина) представляла в очень измененной форме все те же аппараты и орудия, которыми работают ремесленник или мануфактурный рабочий, но это уже орудия не человека, а орудия механизма, или механические орудия»39.

На страницу:
4 из 14