Полная версия
Искусственный интеллект. Начало новой технологической революции: вызовы и возможности
2.1.3. Изменение парадигмы научных исследований в связи с внедрением ИИ-технологий
Внедрение технологий искусственного интеллекта в научные исследования – это не просто очередной инструмент в арсенале ученых, а фундаментальный сдвиг в самой парадигме познания. По своему масштабу и последствиям эта трансформация сравнима разве что с изобретением научного метода как такового в эпоху Возрождения и Нового времени. Подобно тому, как математический аппарат и экспериментальная проверка гипотез перевернули науку XVII-XVIII веков, "большие данные" и машинное обучение меняют самые основы исследовательского процесса в XXI столетии.
В чем же суть этого тектонического сдвига? Традиционно научный метод основывался на цикле "гипотеза-эксперимент-теория". Ученый, отталкиваясь от наблюдений и идей, формулирует предположение о природе изучаемого явления. Затем он ставит эксперименты или ищет естественные данные, которые могли бы подтвердить или опровергнуть эту гипотезу. На основе результатов проверки строится теоретическая модель, объясняющая и предсказывающая поведение феномена. Наконец, новые следствия из теории снова проверяются экспериментом – и цикл повторяется, приводя ко все более точным и общим концепциям.
Суть этого метода – в тесном переплетении эмпирического и рационального, данных и абстрактного мышления. Собственно, вся современная наука выросла из убеждения, что разум способен познавать устройство мироздания, выдвигая обоснованные предположения и проверяя их на опыте. При всей своей революционности, этот подход оставлял неизменной ключевую роль человека как "центрального процессора" познания – именно человеческий интеллект генерировал гипотезы, разрабатывал эксперименты, интерпретировал данные и строил теоретические модели. Математический аппарат и научные инструменты, при всей их важности, играли подчиненную роль – роль усилителей и "периферии" человеческого разума.
С приходом искусственного интеллекта эта схема радикально меняется. Впервые в истории у людей появляется "соразмышлятель", способный брать на себя не только рутинные расчеты и автоматизацию экспериментов, но и генерацию гипотез, поиск закономерностей, построение объясняющих моделей. Самообучающиеся алгоритмы уже показали свою эффективность в таких задачах, как предсказание свойств молекул и материалов, моделирование динамики сложных систем, поиск аномалий в гигантских массивах данных и даже планирование научных исследований.
По сути, машинный интеллект начинает выполнять ключевые функции человеческого разума – способность видеть паттерны, обобщать факты, выдвигать обоснованные предсказания. Но если человеческое мышление ограничено врожденными когнитивными искажениями, ментальными моделями и интуитивными представлениями, то ИИ свободен от этих "шор". Он способен находить неожиданные закономерности и связи, на которые ученый никогда не обратил бы внимания, генерировать гипотезы, противоречащие здравому смыслу, но оказывающиеся верными, строить контринтуитивные, но точные модели реальности.
В результате складывается качественно новая парадигма научного познания, в которой основным "двигателем" прогресса становится не гений одиночек и не коллективный разум научных коллабораций, а гибридный человеко-машинный интеллект. Своего рода "кентавр", верхняя половина которого – творческая интуиция, озарения и целеполагание ученого, а нижняя – неутомимая вычислительная мощь, идеальная память и способность к неограниченному самообучению искусственного разума. В такой связке человек по-прежнему задает "направление и масштаб" научных исследований, но основную "черновую" работу – от постановки экспериментов и сбора данных до построения моделей и даже формулировки теорий берет на себя ИИ.
Эта трансформация затрагивает практически все аспекты и этапы научного процесса. Генерация гипотез из данных с помощью алгоритмов машинного обучения кардинально ускоряет и расширяет "фронт предположений", с которыми работают ученые. Роботизированные научные установки и виртуальные лаборатории на базе ИИ позволяют ставить эксперименты и собирать данные в таких масштабах, которые физически недоступны для обычных исследовательских групп. А системы символьной регрессии и автоматического построения моделей способны "открывать" фундаментальные законы природы напрямую из эмпирической информации – как было недавно продемонстрировано на примере повторного "открытия" уравнений механики, термодинамики и гидродинамики чисто вычислительными методами.
Впрочем, речь идет не просто о количественном росте научной продуктивности, достигаемом за счет автоматизации рутинных задач. Искусственный интеллект принципиально расширяет пространство научного поиска, выходя за пределы не только человеческих, но и дисциплинарных "когнитивных ограничений". Работая сразу с гигантскими массивами данных из разных областей знания, алгоритмы способны находить глубокие связи и аналогии между, казалось бы, несвязанными явлениями – скажем, между структурами социальных и биологических сетей или между геномными паттернами и лингвистическими структурами. Возникает новый уровень единства научной картины мира – своего рода "общесистемная наука", оперирующая сквозными концептуальными моделями, инвариантными относительно конкретной предметной области.
Конечно, у этой трансформации есть и обратная сторона. Передавая ИИ все больше функций по сбору данных, поиску закономерностей и построению моделей, человек неизбежно становится более зависимым от "когнитивного протеза". Возникает своеобразный парадокс: с одной стороны, вычислительная мощь машинного интеллекта невероятно расширяет горизонты науки, а с другой – в каком-то смысле "деквалифицирует" самого ученого, лишая его навыков, которые раньше считались фундаментальными.
И речь даже не о вычислительных умениях, которые давно делегированы компьютерам. Под вопросом оказываются базовые навыки выдвижения и отбора гипотез, дизайна экспериментов, построения теоретических моделей. Когда алгоритмы начинают выполнять эти задачи эффективнее, чем человек, соблазн полностью довериться машинному интеллекту становится почти непреодолимым. "Зачем напрягаться, перебирая в уме варианты, неделями или месяцами планируя эксперименты и разрабатывая аппроксимации, если нейросеть сделает это за секунды, да еще и выдаст результат на порядок точнее?" – скажет иной ученый-прагматик. И в каком-то смысле будет прав. Вот только не приведет ли такая прагматика в конечном итоге к угасанию именно той искры человеческого любопытства, интуиции и творчества, которая всегда двигала науку вперед?
Или, если взглянуть на проблему с другой стороны – а сохранит ли наука привычный нам облик и статус "высшего арбитра истины", когда ее ключевые результаты будет получать ИИ? Готовы ли мы с тем же пиететом и доверием относиться к теориям, "открытым" машинным интеллектом, что часто представляет собой "черный ящик" для самих ученых? Как проверять такие теории на истинность, если их внутренняя логика непрозрачна и опирается на паттерны в данных, нередко контринтуитивные для человека? А что, если ИИ начнет генерировать научные результаты такими темпами, что ученые просто не будут поспевать их интерпретировать и воспроизводить?
Наконец, не приведет ли ИИ-трансформация науки к размыванию самой сути фундаментальных исследований как поиска истины и объективных законов реальности? В конце концов, задача машинного интеллекта – не постичь устройство Вселенной, а оптимизировать целевую функцию, будь то точность предсказаний или скорость вычислений. И если целью научного познания станет чистая производительность, а не стремление к пониманию мироустройства – не рискуем ли мы получить "быструю, но бессмысленную" науку, этакий конвейер по штамповке все новых моделей и теорий, мало связанных с реальностью?
Эти риски и опасения, безусловно, не стоит сбрасывать со счетов. Но, на наш взгляд, они не отменяют грандиозных перспектив, которые открывает ИИ-трансформация научного метода. По сути, это шанс расширить горизонты познания до немыслимых ранее масштабов, преодолеть ограничения не только технического, но и психологического свойства. Выйти за пределы наших интуитивных представлений о том, какой должна быть наука и какими методами получать знания о реальности. Ведь если задуматься, что есть эксперимент, как не способ задать природе вопрос на понятном ей "языке"? А что есть модель, как не перевод ответов природы на доступный нам "научный язык"?
Так, может быть, ИИ – это и есть тот универсальный язык, на котором разум (неважно, человеческий или машинный) наконец-то сможет говорить с реальностью напрямую, без посредников и искажений? Тот "код Вселенной", который ускользал от нас на протяжении веков, а теперь благодаря взаимному усилению естественного и искусственного интеллекта становится постижимым и даже практически применимым? И тогда привычный цикл "гипотеза-эксперимент-теория" – это лишь подготовительные "шпаргалки", нужные человеку, чтобы освоить азы этого фундаментального космического языка.
2.2. Экономические и производственные системы
2.2.1. Прогнозирование экономических показателей и анализ рынков
Прогнозирование экономических показателей и анализ рынков – одна из ключевых областей, где симбиоз искусственного интеллекта и больших данных способен произвести настоящую революцию. В самом деле, современная экономика и финансовые рынки – это невероятно сложные, динамичные, многофакторные системы, поведение которых определяется сложным переплетением объективных закономерностей и субъективных ожиданий, рациональных моделей и иррациональной психологии. Неудивительно, что традиционные методы экономического анализа и прогнозирования, основанные на упрощенных теоретических моделях и экстраполяции прошлых трендов, зачастую дают сбои – особенно в кризисные, переломные моменты.
Именно здесь на помощь приходят технологии машинного обучения и интеллектуальной обработки данных. В отличие от традиционных экономико-математических моделей, ИИ-алгоритмы не опираются на жесткие предположения о "рациональности" агентов и линейности процессов. Вместо этого они учатся распознавать сложные, нелинейные паттерны и взаимосвязи непосредственно из эмпирических данных – будь то котировки акций, макроэкономическая статистика, новостные потоки или записи транзакций. По сути, искусственный интеллект строит максимально гибкие и адаптивные прогнозные модели, не "зашоренные" какими-то изначальными предпосылками и способные улавливать тончайшие сигналы грядущих изменений.
Уже сейчас такой подход применяется в широчайшем спектре задач экономического анализа и прогнозирования. Вот лишь несколько примеров:
алгоритмы машинного обучения используются центральными банками и ведомствами для предсказания ключевых макроэкономических индикаторов – ВВП, инфляции, безработицы, деловой активности. Например, Федеральная резервная система США применяет модели глубокого обучения для прогноза экономической динамики на основе сотен статистических показателей и текстовых данных;
в финансовой индустрии ИИ-модели широко применяются для предсказания котировок акций, облигаций, валют, сырьевых товаров. Причем самообучающиеся алгоритмы способны находить неочевидные закономерности и опережающие индикаторы динамики рынков буквально в любых данных – от волатильности биржевых индексов и поисковых запросов в Google до тональности постов в соцсетях и даже движения транспорта в портах по спутниковым снимкам;
в страховой отрасли искусственный интеллект активно используется для прогнозирования рисков и потенциальных убытков по видам страхования – от автогражданки и здоровья до катастрофических событий и киберинцидентов. Модели машинного обучения анализируют триллионы записей о страховых случаях, характеристиках клиентов, поведенческих факторах и на основе этого предсказывают вероятность и величину ущерба с учетом индивидуального профиля риска;
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.