bannerbanner
Основы ТРИЗ. Теория решения изобретательских задач. Издание 3-е, исправленное и дополненное
Основы ТРИЗ. Теория решения изобретательских задач. Издание 3-е, исправленное и дополненное

Полная версия

Основы ТРИЗ. Теория решения изобретательских задач. Издание 3-е, исправленное и дополненное

Язык: Русский
Год издания: 2023
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
11 из 14

Рис. 4.22. Увеличение степени управляемости фотоаппаратом – переход от неавтоматического к автоматическому управляемому фотоаппаратом


Пример 4.55. Телевизор

Сначала телевизором управляли с помощью ручек, которые находились непосредственно на телевизоре.

На следующем этапе сделали выносной пульт управления, соединенный кабелем с телевизором.

Далее стали использовать беспроводной пульт управления.

Это пример перехода от проводного к беспроводному управлению.

Управление телевизором с помощью ручек или кнопок к управлению с помощью пульта – это переход от непосредственного к дистанционному вправлению.


Пример 4.56. Распределенное управление

В природе имеется много примеров распределенного, самоорганизующегося управления.

Стаи птиц перемещаются в воздухе образуют очень красивые фигуры (рис. 4.23). Подобную картину можно наблюдать у косяков рыб (рис. 4.24). Тысячи птиц или рыб движутся и никогда не сталкиваются друг с другом.


Рис. 4.23. Стаи птиц


Рис. 4.24. Косяки рыб


Это же наблюдается со стадами животных (рис. 4.25).


Рис. 4.25. Стадо животных


Толпа людей тоже подчиняется этой закономерности.

Это примеры сетевого управления.

В технических системах в основном использовалось центральное управление.

Пример 4.57. Сетевое управление

На автомобильной выставке в Токио в 2003 году была показана концепция автомобиля Toyota Personal Mobility – Toyota PM (рис. 4.26).


Рис. 4.26. Автомобиль Толпа людей тоже подчиняется этой закономерности


Это примеры сетевого управления.

В технических системах в основном использовалось центральное управление.


Предусматривалось, что к 2010 году будут иметь сетевое управление (рис. 4.27). Однако к этому времени стали развиваться более прогрессивные технологии. Теперь имеются проекты сетевого управления транспортом с помощью 5 G технологии (рис. 4.28).


Рис. 4.27. Сетевое управление автомобилями Toyota PM


Рис. 4.28. Управление транспортом с помощью 5 G технологии


Уже создано сетевое управление мини-спутниками (рис. 4.29).


Рис. 4.29. Сетевое управление мини-спутниками


Это были примеры перехода от центрального к распределенному, самоорганизующееся управления – сетевому управлению.


Пример 4.58. «Умное сельское хозяйство»

Когда используются датчики для анализа почвы, данные об осадках и далее система автоматически принимает решение о поливе или распределении удобрений с помощью БПЛА (беспилотного летательного аппарата). Так же используются роботизированные машины (комбайны, посевные), которые передвигаются с помощью GPS навигации. Таким образом значительно повышается количество и качество урожая, что ведет к увеличению прибыли16


Увеличение степени управляемости уменьшает степень участия человека в работе технической системы. Иногда эту тенденцию называют вытеснение человека из технической системы.

Вытеснение осуществлялось на протяжении всей истории развития человечества.

Первоначально вытеснение осуществлялось на уровне рабочего органа – руки и ногти были заменены острым камнем или рогом, которым первобытный человек, например, обрабатывал землю. На следующем этапе заменяли и некоторые связи или преобразователи – камень привязали к палке. Далее постепенно происходили этапы механизации, автоматизации и, начиная с 20 века, этап кибернетизации.

Этап механизации начинался с примитивных приспособлений, затем вытеснения человека на уровне двигателя – человек воспользовался природными силами (ветром, силой падающей воды и т. д.) и животными в качестве двигателя.

Следующий этап развития – замена человека на уровне системы управления. Этот этап начинался с примитивных, а затем сложнейших механических автоматов, далее автоматика была электромеханическая, электрическая и электронная.

Этап кибернетизации и интеллектуализации характерен для сегодняшнего дня.

Примеры к этим этапам мы рассматривали в разделе 4.5.2 (степени идеализации):

– Система все делает сама – самоисполнение (рис. 4.30):

– механизация;

– автоматизация;

– кибернетизация (интеллектуализация).


Рис. 4.30. Уменьшение участия человека в работе технической системы


Автоматическое управление в технике – это совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта без непосредственного участия человека в соответствии с заданной целью управления.

Тенденция перехода от неуправляемой к управляемой системе показана на рис. 4.31. Она представляет собой переход от неуправляемой системы к управлению по разомкнутому контуру, затем к переходу к системе с обратной связью, к адаптивной (самонастраивающейся) системе, к самообучаемой и самоорганизующейся системе и, наконец, к саморазвивающейся и самовоспроизводящейся системе.


Рис. 4.31. Переход от неуправляемой к управляемой системе


Управление по разомкнутому контуру осуществляется без знаний о текущем состоянии объекта управления. При таком управлении чаще всего управление ведется по жесткой программе, без анализа каких-либо факторов в процессе работы, либо измеряют и компенсируют главные из возмущений.

Для этого вида управления характерно отсутствие обратной связи, с помощью которой можно получить информацию о том, что происходит в объекте управления.

Структурная схема системы управления по разомкнутому контуру показана на рис. 4.32 Устройство управления воздействует на объект управления по программе, находящейся в задающем устройстве. На объект управления могут воздействовать возмущения. Некоторые системы по разомкнутому контуру измеряют главные из возмущений и компенсируются.


Рис. 4.32. Система управления по разомкнутому контуру


Этот вид управления достаточно примитивен, но часто исполнительные устройства просты, надежны и дешевы. По такому принципу работают примитивные автоматы и конвейерные линии.

Условия предпочтения управления по разомкнутому контуру управлению по замкнутому контуру:

– не нужны высокоточные операции;

– система может работать удовлетворительно без гарантии изменений, которые происходят в объекте управления.


Пример 4.59. Стиральная машина

Переключение команд в стиральной машине осуществляется по определенной программе.


Система с обратной связью представляет собой систему, работающую по замкнутому контуру. В такой системе осуществляется регулирование по отклонению, а цепь прохождения сигналов образует замкнутый контур, включающий объект управления и управляющее устройство.

Структурная схема системы управления с обратной связью показана на рис. 4.33. Устройство управления воздействует на объект управления посредством сигнала (управляющего воздействия) в соответствие с ошибкой управления, которая вырабатывается в результате сравнения сигнала обратной связи с задающим воздействием. На объект управления могут воздействовать возмущения.


Рис. 4.33. Система управления с обратной связью, где перечеркнутый кружок – сумматор


Обратная связь – это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. На вход системы подается сигнал, являющийся функцией выходного сигнала. Часто это делается преднамеренно, чтобы повлиять на динамику функционирования системы.

Различают положительную и отрицательную обратную связь.

Отрицательная обратная связь – это тип обратной связи, при которой входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала. Отрицательная обратная связь компенсирует отклонения управляемой величины от желаемых значений вне зависимости от причин, вызвавших эти отклонения. Таким образом, на вход системы подается инвертируемый выходной сигнал, сигналы вычитаются, уменьшая ошибку управления.

Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.

На рис. 4.34 затемненная часть сумматора обозначает, что он является инвертором (сигнал вычитается).


Рис. 4.34. Система управления с отрицательной обратной связью


Примером отрицательной обратной связи является любая система автоматического управления и регулирования, следящая система.


Пример 4.60. Инвертор

Простейший пример отрицательной обратной связи – это инвертор или инвертирующий усилитель (рис. 4.35). Он выполнен на операционном усилителе (ОУ). Обратная связь подается через сопротивление R3 на инвертирующий вход (он обозначается кружочком), при этом фаза выходного сигнала сдвигается относительно входного на 180º. Поэтому обратная связь отрицательная.


Рис. 4.35. Схема инвертора (инвертирующего усилителя) ОУ – операционный усилитель, R1, R2, R3 – сопротивления.


Эффективность управления повышается, если управление осуществляется не только по управляемой величине, но и по ее производным и интегралу.

Производная позволяет раньше реагировать на изменение управляемой величины, а интеграл позволяет учесть предыдущие изменения.

Положительная обратная связь – это тип обратной связи, при которой изменение выходного сигнала системы усиливается за счет складывания с входным сигналом, способствуя дальнейшему отклонению выходного сигнала от первоначального значения.

Системы с сильной положительной обратной связью неустойчивы, в них возникают незатухающие колебания (автоколебания).

Положительная обратная связь используется, например, в усилителях, генераторах, переключателях и т. п.


Пример 4.61. Генератор

Простейший пример положительной обратной связи – это генератор. На схеме (рис. 4.36) генератор выполнен на операционном усилителе (ОУ). Обратная связь подается через сопротивление R3 на положительный вход, при этом входной и выходной сигналы складываются, усиливая выходной сигнал. Поэтому обратная связь положительная.


Рис. 4.36. Схема генератора

ОУ – операционный усилитель, R1, R2, R3 – сопротивления


Самонастраивающаяся система – это система, в которой приспособление к случайно изменяющимся условиям обеспечивается автоматическим изменением параметров настройки или путем автоматического поиска оптимальной настройки. Самонастраивающуюся систему также называют адаптивной или самоприспосабливающейся.

В самонастраивающихся системах параметры меняются в более широком диапазоне по сравнению с обычными (не самонастраивающимися) системами, в которых осуществляется первоначальная настройка (создание определенных параметров) при разработке системы. Такие параметры влияют на устойчивость и качество процессов управления.

Самонастраивающаяся система сохраняет работоспособность даже в условиях непредвиденного изменения свойств управляемого объекта, цели управления или условий окружающей среды посредством смены алгоритмов своего функционирования или поиска оптимальных состояний.


Пример 4.62. Коммутатор

Коммутаторы предназначены для подключения и отключения входных сигналов. Они широко используются в серверах, чтобы повысить производительность пропускания каждого из каналов (портов). Каждый из портов имеет определенную скорость пропускания информации, что ограничивает общую производительность ее прохождения.

Компания IBM разработала коммутатор с самонастраивающимися портами способными автоматически выбирать наибольшую скорость пропускания информации без блокировки каналов.

Самообучающаяся система – это система, алгоритм функционирования которой совершенствуется путем самообучения в процессе работы, улучшая функционирование системы.


Пример 4.63. Поисковые системы

Информацию в Интернете ищут с помощью специальных поисковых систем, например, поисковой машины Google. Программа поисковой машины самостоятельно изучает запросы и впоследствии предоставляет клиентам информацию, более подходящую для каждого из них. Например, предоставляет информацию, к которой чаще всего обращаются.


Самоорганизующаяся система – это система, которая способна синтезировать модель структуры системы в зависимости от ее предназначения и окружающих ее условий. Она разрабатывает алгоритм работы системы, проектируя систему управления, и по синтезируемой модели создает саму систему из имеющихся элементов. Такая система способна перестроить структуру системы, чтобы приспособиться к внутренним или внешним изменениям. В простейшем случае система способна изменить связи между подсистемами, а в сложнейшем случае заменять, добавлять или изменять подсистемы для создания структуры, способной наилучшим образом выполнить необходимые функции.

Основное отличие самоорганизующейся системы от самонастраивающейся системы заключается в том, что в первой в процессе приспособления преобладают качественные изменения, а во второй – количественные.


Пример 4.64. Самоорганизующийся робот

В лаборатории вычислительного синтеза Корнельского университете (США) разработали опытный образец робота, способного синтезировать свою структуру в зависимости от окружающих его условий и обстоятельств воспроизвести себя из универсальных элементов – кубиков.

На поверхности кубиков имеются электромагниты, с помощью которых они могут соединяться и разъединяться друг с другом; питание подводится через контакты на поверхности монтажного стола.

Первоначально робот создает свою модель и по ней синтезирует систему управления, что осуществляется в результате ограниченного количества физических экспериментов (это поисковая самонастраивающаяся система).

Алгоритм работы робота позволяет ему функционально компенсировать механические повреждения в результате коррекции собственной модели.


Саморазвивающаяся система – это самообучающаяся, способная не только накапливать знания, но и развивать систему в соответствии с поставленными целями по определенным закономерностям.


Пример 4.65. Саморазвивающаяся компьютерная система

В патенте США 5 072 406 описана саморазвивающаяся компьютерная система, память которой содержит блоки инструкций, специальных знаний и базовых данных. Блок специальных знаний включает знания конкретной области и стратегию их использования. Блок базовых данных включает знания по использованию инструкций.

При поступлении входного сигнала он обрабатывается и перепроверяется по всем блокам с учетом имеющихся инструкций и базовых данных, вырабатывая выходной сигнал. При выявлении новых знаний они заносятся в блок специальных знаний. В процессе деятельности блок специальных знаний может изменять инструкции, постоянно развивая компьютерную систему.


Самовоспроизводящаяся система – это самоорганизующаяся, саморазвивающаяся система, способная создать подобную себе систему.

Основное отличие самоорганизующейся системы от самовоспроизводящейся системы заключается в том, что в первой используются готовые подсистемы, а во второй – их изготовляет сама система.

Самовоспроизводящиеся системы, прежде всего, характерны для живых организмов. Клетка сама себя воспроизводит. Не малую роль в этом играют стволовые клетки.


Пример 4.66. Самовоспроизводящаяся машина

Доктор Adrian Bowyer из университета Ванны в Великобритании разработал машину «RedRap» (Replicating Rapid-prototyper), которая 29 мая 2008 г. в 14:00 воспроизвела свою копию. Пластмассовые детали для этой машины изготовлялись на 3D принтере, встроенном в машину.


4.5.4. Закономерность увеличения степени динамичности


Закономерность увеличения степени динамичности является основным из законов эволюции систем (рис. 4.37).


Рис. 4.37. Структура закономерностей эволюции систем


Развитие системы идет в направлении увеличения степени динамичности.


Динамичная система может изменять свои параметры, структуру (в частности форму), алгоритм, принцип действия и функции, чтобы наиболее эффективно достичь поставленной цели и удовлетворить потребность. Динамическая система в своем развитии может менять так же цель и потребность, приспосабливаясь к внешним и внутренним изменениям.

Изменения могут происходить:

– во времени;

– по условию.

Следствия из закона:

1. Статические системы стремятся стать динамическими;

2. Системы развиваются в сторону увеличения степени динамичности.

Приведем пример на увеличения степени динамичности.


Пример 4.67. Электронная книга

Первоначально книга представляла собой свиток, как правило из папируса или пергамента.

В дальнейшем книги делались из отдельных листков бумаги, скрепленных вместе переплетом. Их стало удобнее читать, и они занимали меньше места. Для получения бумаги необходимо уничтожать лес. Они много весят, занимают много места на полках и пылятся.

Далее книги слали переводить в электронный вид и читали с экрана компьютера. Такие книги не использовали бумагу, занимали мало места и не пылились, в одном компьютере можно иметь большую библиотеку, но появились неудобства, связанные с процессом чтения, – не везде удобно читать с компьютера, например, в кровати. В дальнейшем появились лэптопы, миникомпьютеры и планшеты. Их легко переносить и удобно читать в любом месте. Общий недостаток компьютеров – не все любят читать с экрана. Кроме того, чтение с экрана портит зрение, так как экран излучает свет, который непосредственно направлен в глаза.

Выпустили электронную книгу (e-book reader), в которую можно загружать много книг.

Такие книги используют электронную бумагу (electronic paper), в которой используются электронные чернила (e-inc). Электронная бумага отражает свет, так же как обычная книга, поэтому не портит зрение.


Увеличение динамичности происходит изменением динамичности параметров, структуры, алгоритма и принципа действия, функции, потребности и цели, которое может происходить во времени, в пространстве и по условию.

Степень динамичности увеличивается переходом от изменения динамичности параметров к изменению динамичности структуры, алгоритма, принципа действия, функции, потребности и цели.

Основная линия увеличения степени динамичности показана на рис. 4.38.

Изменение параметров системы – это наиболее простой способ увеличения степени динамичности системы с целью ее адаптации к внутренним и внешним изменениям.

Изменяться может любой параметр системы, например, электрические параметры (величина тока, напряжения, сопротивления и т. д.), оптические параметры (длина волны, яркость, освещенность и т. д.), акустические параметры (амплитуда и частота звука и т. п.), механические параметры (эластичность, жесткость, вязкость, число степеней свободы и т. д.).


Рис. 4.38. Линия увеличения степени динамичности


Пример 4.68. Оперативные запоминающие устройства – ОЗУ (RAM)

Оперативные запоминающие устройства – ОЗУ (RAM) созданы для хранения информации в цифровом виде. ОЗУ работает, пока на микросхему подается питание. После отключения питания информация теряется.

В дальнейшем были созданы динамические ОЗУ (DRAM). С их помощью сократили время обмена информацией (запись и считывание). Динамические ОЗУ построены на электронных приборах с зарядовой связью. Информация хранится на паразитных конденсаторах (емкостях) транзисторов, как пакеты зарядов. Они обладают высокой скоростью обмена информации (пакетов зарядов), но не способны хранить ее длительное время (<1 мс).

Для решения этой задачи в DRAM осуществляется непрерывная циклическая перезапись (обновление) информации. Это пример изменения параметров во времени.


Увеличение степени динамичности системы может осуществляться путем изменения структуры системы – это более сложный способ сделать систему динамичной, чем изменение параметров. Под изменением структуры мы понимаем и изменение формы объекта.

Увеличение степени динамичности системы может осуществляться путем изменения алгоритма работы.


Пример 4.69. Микросхемы

Разработали программируемые логические интегральные схемы – ПЛИС (Field Programmable Gate Arrays – FPGA). В отличие от обычных цифровых микросхем логика работы ПЛИС не создается при изготовлении, а устанавливается посредством ее программирования.

ПЛИС представляет собой набор элементов, расположенные в виде матрицы. Между элементами расположены соединительные трассы, представляющие собой программируемые ключи, соединяющие необходимые блоки. Пользователь может создать нужную для него структуру, программируя определенную логику.

Таким образом, данная микросхема позволяет менять ее внутреннюю структуру и алгоритм работы в зависимости от функции, которую необходимо выполнять. ПЛИС можно перепрограммировать под новую функцию.

На страницу:
11 из 14