bannerbanner
Великий квест. Гении и безумцы в поиске истоков жизни на Земле
Великий квест. Гении и безумцы в поиске истоков жизни на Земле

Полная версия

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 3

Тем временем другой немецкий биолог, Теодор Шванн, рассматривал в микроскоп клетки животных. Предполагается, что двое этих ученых как-то за обедом поговорили о работе и Шванн осознал сходство между изучаемыми Шлейденом растительными клетками и клетками животных, объектами своего изучения. В результате в 1839 году вышла его книга “Микроскопические исследования в области сходства структуры и роста у животных и растений” (Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants). В ней Шванн делает следующий очевидный шаг и заявляет, что не только растения, но и вообще все живые организмы в качестве основы имеют клетки[27]. Именно это объединяет синего кита с красным мухомором. Вопреки всем их различиям оба состоят из одинаково устроенных клеток.

“До чего же велико различие между мышечной и нервной клетками, между последними и клеточной тканью (которая используется только применительно к растениям), эластичной и ороговевшей тканями, и так далее, – пишет Шванн, прилагая все усилия к тому, чтобы читатель понял особую важность этих слов. – Однако когда мы обращаемся к истории развития данных тканей, мы понимаем, что все это многообразие форм объединяет происхождение от клеток и только от клеток, которые совершенно аналогичны таковым у растений и которые демонстрируют потрясающее сходство в некоторых самых существенных процессах, которые они сами и делают возможными”.

Суть идеи Шванна заключалась в том, что все живое либо состоит из клеток, либо, если речь идет о чем-то вроде ногтей и перьев, создано клетками. Позже она получила название “клеточная теория”, и в наши дни ее правильность не вызывает сомнений.

Как одна клетка может породить другую? Ответ на этот вопрос отыскивался постепенно, на протяжении 1830-х годов, по мере того, как ученые наблюдали за данным процессом в свои микроскопы[28]. Все оказалось очень просто: клетка умеет делиться надвое. Если она имеет сферическую форму, то сначала образует посередине перемычку. Затем перемычка постепенно сужается, и клетка приобретает форму галстука-бабочки. Наконец перемычка исчезает, и вместо единственной материнской клетки мы имеем две дочерние.

Последний штрих был нанесен биологом Робертом Ремаком[29], уроженцем Пруссии. Он пришел к выводу, что процесс деления клеток является единственным путем образования новых клеток. В 1840-е – 1850-е годы Ремак опубликовал целый ряд доказательств, но их никто не принял всерьез. Вдобавок – из-за иудейского вероисповедания – Ремаку много раз отказывали в получении профессорского звания, которого тот, несомненно, был достоин. В итоге идеи Ремака распространились благодаря Рудольфу Вирхову, который в 1855 году свел их к лаконичному Omnis cellula e cellula (лат. “клетка возникает только от клетки”). К тому времени Вирхов построил чрезвычайно успешную карьеру (он уже стал первооткрывателем лейкемии, и ему предстояло сыграть важную роль в создании общественного здравоохранения), однако не счел нужным как-либо упомянуть вклад Ремака. Лишь спустя три года он с неохотой и оговорками признал, что использовал работы своего предшественника.

Эта череда открытий (и один случай откровенного плагиата) привела к ответу на наш вопрос. Итак, поскольку все живое вокруг нас состоит из клеток, то, наверное, и первый живой организм тоже был клеткой – хотя, разумеется, более простой, чем современные клетки. И в этом случае вопрос “Как началась жизнь?” сводится к вопросу “Как возникла самая первая клетка?”

Здесь кое-кто из читателей может запротестовать. Разве вирусы – это не нечто несомненно живое и устроенное еще более просто, чем клетки? Все-таки вирусы намного меньше – недаром же их открыли только в 1890-е годы, когда миновало уже больше двух столетий с того дня, как Левенгук заприметил своих анималькулей. Обычный вирус – это всего лишь оболочка, в которую упаковано небольшое количество генов. Однако именно эта простота и делает вирусы плохими кандидатами на звание первого организма. Вирусы упростились настолько, что оказались неспособны к самостоятельному существованию. Для размножения и процветания им абсолютно необходимо проникнуть в клетку и завладеть ее внутренней машинерией, так что вирусы, пожалуй, все же не являются живыми в полном смысле этого слова. Очень может быть, что в ходе эволюции они возникли после клеток, на которых и начали паразитировать. Видимо, первой жизнью могли быть только клетки.

Теперь давайте обратимся к вопросу о месте зарождения жизни. Уж на него-то ответить совсем не трудно. Единственное известное нам место, где существует жизнь, это Земля. Поэтому будет естественным считать, что именно наша планета является местом зарождения жизни. Однако некоторые ученые полагают иначе: по их мнению, жизнь зародилась где-то за пределами нашей планеты и лишь потом была перенесена на Землю. Существует ряд вариантов этой так называемой “панспермии”; подробнее мы поговорим о ней в 6 главе. Пока же отметим, что, несмотря на активные поиски, жизнь в космосе обнаружить не удалось – скорее всего, это подрубает данную идею на корню.


Остается вопрос времени. Как долго было открыто окно возможностей для возникновения на Земле жизни? Чтобы понять это, необходимо выяснить, во-первых, возраст планеты Земля и, во-вторых, как давно на ней существует жизнь, то есть, по сути, узнать возраст наиболее древних свидетельств жизни.

Первым был получен ответ на вопрос о возрасте Земли.

Обсуждение этой темы обычно начинается с насмешек над ирландским архиепископом Джеймсом Ашшером, который в 1650 году заявил, что Земля была создана Богом в момент наступления темноты 22 октября 4004 года до Рождества Христова[30]. Ашшер получил эту дату путем сложения возраста ключевых действующих лиц Библии, дополнительно сверяясь с современными ему сведениями из древней истории, а также астрономии. Спору нет, Ашшер безнадежно ошибся, однако высмеивать его все-таки несправедливо. Труды Ашшера были написаны до того, как возникла наука в современном ее понимании. К 1650 году Коперник и Галилео Галилей уже внесли свой вклад в копилку знаний, однако Исааку Ньютону было всего восемь лет, а геологии как самостоятельной науки не существовало вовсе. С учетом этого вычисления Ашшера следует признать очень тщательными. Палеонтолог Стивен Джей Гулд мужественно защищал Ашшера, подчеркивая сложность построения временной шкалы на основе Библии, которая часто не указывает даты и вынуждает проводить параллели с историей Рима и Персии[31]. “Ашшер являл собой пример лучшего академического ума своего времени”, – пишет Гулд. Единственной ошибкой епископа было считать (подобно многим его современникам) Библию совершенно надежным источником.

За два следующих века ученые выяснили, что горные породы земной коры образуют отдельные слои и что более глубокие слои старше тех, которые расположены ближе к поверхности. Каждый из слоев относится к определенному периоду истории Земли – этим периодам позже дали названия, такие, к примеру, как “юрский”. К середине XIX столетия геологи (включая Чарльза Лайеля) пришли к выводу, что слои образовались в ходе длительного и постепенного отложения мелких частиц, – но вот установить их точный возраст возможным пока не представлялось.

Одно из первых кропотливых вычислений выполнил в XIX веке физик Уильям Томсон, который позже получил дворянский титул и стал известен как первый лорд Кельвин. Томсон был убежденным христианином и скептически относился к теории эволюции Дарвина. Однако он был еще и экспертом в области термодинамики – науки о тепле и о том, насколько быстро остывают те или иные объекты. Кельвин начал с предположения, что исходно Земля была очень горячей, – ведь ее более глубокие слои до сих пор имеют гораздо более высокую температуру. Это навело ученого на мысль, что наша планета остывает. В 1864 году он примерно оценил ее возраст: Земле от 20 до 400 миллионов лет[32]. Судя по наблюдаемой температуре, старше она быть не могла. К 1897 году Кельвин остановился на 20 миллионах.

Кельвин тоже безнадежно ошибался, но, опять-таки, в этом не было его вины. Одним из эпохальных открытий того времени стала радиоактивность, о которой впервые услышали лишь в 1896 году. В недрах Земли покоится множество радиоактивных горных пород, которые излучают тепло, – но Кельвин об этом ничего не знал. Он считал, что и Солнце столь же молодо, ведь в то время никто не мог вообразить, что звезда может сиять многие миллионы лет. Все изменило открытие в 1930-е годы ядерного синтеза. Стало понятно, что Солнце является колоссальным источником энергии и может оказаться очень древним, – и такой же древней может оказаться наша Земля[33].

Открытие радиоактивности оказалось ключом к получению правильной оценки возраста Земли. Это весьма любопытная история, однако мы сразу перейдем к ее развязке. В начале XX века физики выяснили, что некоторые атомы нестабильны и склонны разрушаться (или распадаться) на более мелкие и устойчивые атомы. При этом высвобождаются очень маленькие порции радиации.

Дело в том, что атом не является единой частицей, как это считали на протяжении длительного времени. В действительности он “сделан” из более мелких частиц трех типов. Всякий атом имеет центральную часть – ядро, состоящее из специфического для него числа протонов и нейтронов. Это ядро окружено “облаком” электронов. Вся суть атома заключена как раз в его ядре, поскольку протоны и нейтроны в нем должны быть упакованы строго определенным образом. И если частиц того или иного сорта в нем слишком мало или слишком много, то такое ядро становится нестабильным.

Каждый из радиоактивных элементов распадается с вполне определенной скоростью. Представьте, что у вас есть слиток урана-238 (самой распространенной разновидности урана) и что в этом слитке ровно 1000 атомов. Потребуется 4468 миллионов лет для того, чтобы половина их (то есть 500) распалась с образованием атомов свинца. Далее потребуется еще 4468 миллионов лет для распада половины оставшегося урана (250 атомов) – и так вновь и вновь вплоть до момента, когда урана уже не останется и слиток окажется полностью свинцовым. Этот период в 4468 миллионов лет, за который содержание урана-238 убывает вдвое, называют его периодом полураспада (англ. half-life). Поскольку каждый радиоактивный элемент имеет собственный период полураспада (установленный в эксперименте и постоянный), эта характеристика может быть использована для датировки горных пород (то есть оценки их возраста). Первым прошел по этому пути американский радиохимик Бертрам Болтвуд, измеривший в 1907 году соотношение урана и свинца в горных породах и заключивший, что им по меньшей мере 400 миллионов лет[34].

Однако вскоре стало понятно, что в действительности проблема гораздо сложнее. Оказалось, что уран – не единственный радиоактивный элемент, который распадается с образованием свинца. К тому же существует несколько разновидностей самого урана, и все они распадаются с разной скоростью.

Проблему, причем практически единолично, решил “тихий и непритязательный” Артур Холмс[35]. Свою первую статью он опубликовал в 1911-м, всего через два года после окончания университета. В ней Холмс описал успешную датировку горной породы девонского периода – тех времен, когда широко распространились первые наземные растения, а океан заполонили первые рыбы. Холмс сделал вывод, что его образцам 370 миллионов лет, – и это число соответствует девонскому периоду в современном понимании[36].

Два года спустя Холмс выпустил свою первую книгу, “Возраст Земли” (The Age of the Earth), – ее написанию не помешало даже то, что в это самое время автор принимал участие в геологоразведочных работах в Мозамбике. (Путешествие, кстати, едва не кончилось для Холмса трагически из-за заражения малярией.) В книге приведены доказательства того, что радиоактивный распад может служить надежным способом для установления возраста Земли, и – на основании датированных Холмсом ранее пород – сделано предположение, что нашей планете 1 миллиард 600 миллионов лет[37].

На протяжении следующих двух десятков лет Холмс продолжал отодвигать результаты своего радиометрического датирования в прошлое. (Две новые редакции его книги вышли в 1927 и 1937 годах.) Затем им была обнаружена порода возрастом 3 миллиарда лет – на этой цифре он настаивал в 1946 году[38].

В этом месте история слегка запутывается, поскольку Холмс, много лет использовавший радиометрический анализ, внезапно узнал, что его вовсю применяют и другие исследователи. Методики датировки были усовершенствованы, их даже начали использовать для изучения метеоритов – которые, как предполагалось, образовались одновременно с Землей, но не прошли через выветривание и прочие передряги, случившиеся на нашей планете.

Поворотным оказался 1953 год, когда двое ученых независимо друг от друга пришли к одному и тому же в целом правильному результату. Первый из них – это немец Фридрих Хоутерманс, побывавший в заключении и в Советском Союзе, и в нацистской Германии, а впоследствии получивший всеобщее признание как эксперт в области радиохимии. При исследовании состава метеорита Хоутерманс сделал вывод, что “небесному камню” 4,5 миллиарда лет, и предположил, что и нашей планете столько же[39]. За несколько месяцев до того Клэр Паттерсон озвучил близкие к этим данные – он получил их, изучая метеорит из Каньона Дьявола (тот самый, который создал колоссальный кратер Бэрринджера в Аризоне)[40]. Паттерсону обычно отдают пальму первенства, хотя такое предпочтение выглядит откровенно нелепым. Оба ученых пришли к этому выводу почти одновременно, так что успех было бы справедливо разделить между ними поровну. Позднее Паттерсон исправил некоторые неточности в своих результатах и надлежащим образом обнародовал их в 1956 году[41]

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

Monod J. Le hazard et la nécessité. 1970. Éditions de Seuil, Paris. Published in English as Chance and Necessity by William Collins Sons & Co Ltd, 1972.

2

Постраничные примечания, отмеченные знаком * (кроме особо оговоренных), принадлежат автору. Цифрами помечены в тексте отсылки к разделу “Примечания”, находящемуся в конце книги. – Прим. ред.

3

Blobel G. Christian de Duve (1917–2013). Nature, vol. 498, iss. 7454, p. 300. 2013.

4

De Duve C. Life as a cosmic imperative? Philosophical Transactions A, vol. 369, iss. 1936, pp. 620–623. 2011.

5

Saini A. Inferior: How science got women wrong and the new research that’s rewriting the story. 2017. HarperCollins.

6

Whitesides G. M. Revolutions in chemistry. Chemical & Engineering News, vol. 85, n. 13, pp. 12–17. 2007.

7

Gaiman N. Norse Mythology. 2017. Bloomsbury.

8

На самом деле раствор мочевины бесцветный, цвет моче придают другие вещества. – Прим. перев.

9

Wöhler F. Uber künstliche Bildung des Harnstoffs. Annalen der Chemie und Pharmacie, vol. 12, pp. 253–256. 1828.

10

Ramberg P. J. The Death of Vitalism and The Birth of Organic Chemistry: Wohler’s Urea Synthesis and the Disciplinary Identity of Organic Chemistry. Ambix, vol. 47, iss. 3, pp. 170–195. 2000.

11

Вот почему нас не устроит расхожее “это сделал(и) бог(и)”: подобные слова ничего не объясняют. Если в ответ на вопрос “Как был сделан автомобиль?” вы услышите “Кто-то его собрал”, вы вряд ли останетесь довольны.

12

Élan vital (фр. “жизненная сила”) – понятие, введенное французским философом Анри Бергсоном для объяснения образования сложных структур в ходе эволюции и индивидуального развития организмов. – Прим. перев.

13

Наверное, имеется в виду “Акира”, полнометражный аниме-фильм 1988 года японского режиссера Кацухиро Отомо. – Прим. перев.

14

Moore B. The Origin and Nature of Life. 1913. Henry Holt and Company (New York), Williams and Norgate (London).

15

Grand S. Creation: Life and how to make it. 2000. Weidenfeld & Nicolson, p. 6.

16

Перевод В. Карпова. – Прим. ред.

17

Первый эксперимент, поставивший под сомнение самопроизвольное зарождение, провел Франческо Реди в 1668 году. – Прим. науч. ред.

18

Fry I. The Emergence of Life on Earth: A historical and scientific overview. 2000. Rutgers University Press.

19

Pouchet F. Note sur des proto-organismes végétaux et animaux, nés spontanément dans l’air artificiel et dans le gaz oxygène. Comptes Rendus, vol. 47, pp. 979–984, Académie des Sciences, 1858.

20

Pouchet F. Hétérogénie, ou Traité de la génération spontanée. 1859. Paris: Baillière.

21

Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. 1859. John Murray, London.

22

Mesler B., Cleaves H. J. A Brief History of Creation: Science and the search for the origin of life. 2016. W. W. Norton & Company, Inc.

23

www.darwinproject.ac.uk/letter/DCP-LETT-7471.xml

24

Hooke R. Micrographia: or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses. With Observations and Inquiries Thereupon. 1665. Royal Society, London.

25

Van Leeuwenhoek A. Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. Philosophical Transactions, vol. 12, n. 133, pp. 821–831. 1677.

26

Schleiden M. J. Beiträge über Phytogenesis. Müller’s Archiv für Anatomie and Physiologie, pp. 137–176. 1838.

27

Schwann T. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants. 1839.

28

Baker J. R. The Cell-theory: a Restatement, History, and Critique. Part IV. The Multiplication of Cells. Quarterly Journal of Microscopical Science, vol. 94, iss. 4, pp. 407–440. 1953.

29

Lagunoff D. A Polish, Jewish Scientist in 19th-Century Prussia. Science, vol. 298, iss. 5602, p. 2331. 2002.

30

Ussher J. Annales Veteris Testamenti, a prima mundi origine deducti, una cum rerum Asiaticarum et Aegyptiacarum chronico, a temporis historici principio usque ad Maccabaicorum initia producto. 1650.

31

Gould S. J. Fall in the House of Ussher. Natural History, vol. 100, pp. 12–21. 1991.

32

Thomson W. On the Secular Cooling of the Earth. Transactions of the Royal Society of Edinburgh, XXIII, pp. 160–161. 1864.

33

Stacey F. D. Kelvin’s age of the Earth paradox revisited. Journal of Geophysical Research: Solid Earth, vol. 105, iss. B6, pp. 13155–13158. 2000.

34

Boltwood B. B. Ultimate Disintegration Products of the Radio-active Elements. Part II. The disintegration products of uranium. American Journal of Science, series 4, vol. 23, pp. 77–88. 1907.

35

Dunham K. C. Arthur Holmes. Biographical Memoirs of Fellows of the Royal Society, vol. 12, pp. 290–310. 1966.

36

Holmes A. The Association of Lead with Uranium in Rock-Minerals, and Its Application to the Measurement of Geological Time. Proceedings of the Royal Society A, vol. 85, iss. 578, p. 248. 1911.

37

Holmes A. The Age of the Earth. 1913. Harper & Brothers.

38

Holmes A. An estimate of the age of the Earth. Nature, vol. 157, pp. 680–684. 1946.

39

Houtermans F. G. Determination of the age of the Earth from the isotopic composition of meteoritic lead. Nuovo Cimento, vol. 10, iss. 12, pp. 1623–1633. 1953.

40

Patterson C. C. The isotopic composition of meteoritic, basaltic and oceanic leads, and the age of the Earth. Proceedings of the Conference on Nuclear Processes in Geologic Settings, Williams Bay, Wisconsin, Sept. 21–23, 1953, pp. 36–40.

41

Patterson C. C. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, vol. 10, pp. 230–237. 1956.

Конец ознакомительного фрагмента
Купить и скачать всю книгу
На страницу:
3 из 3