Полная версия
Запутанный мозг. Путеводитель по нейропсихологии
Хьюбел и Визель приступили к своим исследованиям в начале 1960-х годов, и за это десятилетие был сделан еще один важный шаг в понимании того, как работает мозг, ибо именно в этот период были выделены специфические нейротрансмиттеры (они же нейромедиаторы). Как мы уже знаем, электрическая активность мозга возникает под действием химических веществ при передаче сообщения от одной нервной клетки, или нейрона, другой. Открытие того, какие именно сообщения несли в себе некоторые из этих веществ, позволило ученым обнаружить и проследить в мозге нейрохимические пути. Из следующих глав мы узнаем, насколько большую роль это открытие сыграло для понимания, как именно работает мозг. Многие исследования проводились на животных, поскольку изучение мозга людей сводилось лишь к внешним наблюдениям, о которых мы говорили выше, или к изучению клинических пациентов, у которых был травмирован мозг. Практикующие врачи (клиницисты), отмечая те зоны мозга, которые были травмированы, пытались соотнести их с конечными психологическими сдвигами или переменами в личности человека. Иногда такие результаты были вполне очевидными: например, Брока и Вернике (о них мы расскажем в главе 10) сумели идентифицировать ключевые области мозга, управляющие языковой/речевой функцией, еще в XIX веке, изучая людей со специфическими речевыми недочетами, вызванными травмой мозга, и соотнося эти симптомы с теми повреждениями конкретных участков мозга этих людей, которые были выявлены в ходе вскрытия черепа после их смерти.
Что касается изучения более точечных изменений в личности человека, вызванных повреждением мозга, то тут дело обстояло гораздо сложнее, главным образом из-за того, что сравнения приходилось делать чисто ретроспективно, т. е. сопоставляя, каким человек стал после получения травмы, с тем, каким он был раньше по его собственным словам. Проблема в данном случае заключается в том, что у всех нас много самых разных психических состояний, и какую-либо психическую или личностную характеристику можно легко увязать с несчастным случаем, тогда как эта характеристика наличествовала постоянно, пусть даже все это время оставалась незамеченной. Например, старики часто замечают, что их память дает сбой, хотя, как показывают наблюдения, молодые люди страдают провалами в памяти так же часто или даже еще чаще, чем пожилые. Разница лишь в том, что молодые люди не фокусируются на этом и не уделяют этому феномену особого внимания, тогда как пожилые подмечают его и беспокоятся каждый раз, как что-то забывают, ибо связывают забывчивость со старостью или старением, хотя на деле они страдали этим всю свою жизнь. То же происходит и в случае, когда человек получает травму мозга: мы словно по-новому глядим на себя и начинаем подмечать признаки, которые у нас были и раньше, но которые мы прежде у себя не замечали. В силу этого мы считаем, что это что-то новое, и связываем их с повреждением мозга. Это, конечно же, не значит, что травма мозга не оказывает на нас никакого действия; разумеется, оказывает, но очень трудно определить, в чем именно заключается это воздействие, поскольку мы не записываем и не фиксируем на бумаге каждый аспект нашей обычной жизнедеятельности.
Сканирование мозга
Настоящий прорыв в изучении мозга был сделан в 1980-х годах с изобретением такого метода, как сканирование. Сканирование впервые в истории дало возможность изучать живой мозг в активном, действующем состоянии. Отпала надобность изучать отклонения в поведении человека с травмированным мозгом или полагаться на исследования мозга животных; теперь мы можем наблюдать за нормальными, здоровыми людьми и видеть, как работает их мозг, и это существенно обогащает наше понимание происходящего. Нейровизуализация дает нам картину мозга, на которой видно, какие его части активны в любой период времени и какие реагируют на различные стимулы.
Существует несколько типов сканирования мозга. В одной группе сканов для демонстрации работы мозга используется взаимодействие электричества и магнетизма; наиболее практичными и эффективными из них считаются МРТ-сканы. В основе этого метода – тот факт, что у молекул воды в клетках мозга, когда они активны, магнитное поле немного отличается от того, когда они пребывают в состоянии покоя. Томограф создает последовательный ряд электромагнитных волн, немного напоминающих радиоволны, и фиксирует, как активные клетки мозга реагируют на них. Сканер принимает и записывает эти реакции, создавая на их основе графическое изображение активности, происходящей в мозге в данный момент.
Существуют разные способы МРТ-сканирования. Самый распространенный – это функциональная МРТ (фМРТ), при которой исследуется активность мозга в привязке к специфическим функциям. Например, поскольку процесс сканирования занимает считанные секунды, исследователи получают возможность наблюдать, что происходит в мозге, когда люди заняты активной мыслительной деятельностью: читают, предаются воспоминаниям или решают головоломку. Последовательный ряд сканов формирует картину, отражающую изменения мозговой активности во время выполнения поставленной задачи.
Другой подобный способ сканирования – это событийная функциональная МРТ (сфМРТ). При таком типе сканирования сравниваются образцы электрической активности мозга, вызванной двумя-тремя разными событиями: например, активность мозга, зафиксированная в случае, когда человек дает правильный ответ на вопрос во время тестирования памяти, сравнивается с активностью мозга, зафиксированной, когда он же дает неправильный ответ.
Другие виды сканирования – это позитронно-эмиссионная (ПЭТ) и компьютерная аксиальная томография (КАТ). В первом случае отслеживается распространение небольшого количества радиоактивного вещества, введенного в кровь и поглощенного мозгом. Активные клетки мозга нуждаются в большем количестве крови, чем пассивные, поскольку нейроны после активации пополняют запас питательных веществ, поэтому приток крови к определенным участкам мозга указывает как раз на более активные клетки. В классических исследованиях, например в исследовании Тульвинга (1989), изучавшего свойства и функции памяти у людей, вспоминавших эпизоды из своих отпусков, использовались радиоактивные изотопы золота. Изотопы золота быстро распадаются и не задерживаются надолго в кровеносной системе, зато с их помощью можно быстро выявить, какие зоны мозга активны в данный момент. Медики используют с этой целью более простые вещества и субстанции, но принцип остается неизменным.
Во втором случае применяется серия рентгеновских или ультразвуковых изображений, сделанных фрагментарно, и из этих фрагментов затем комбинируется трехмерное изображение. При этом сравниваются различные уровни плотности мозга. Серое вещество, например, менее плотное, чем белое, поэтому на компьютерной томограмме оно выглядит иначе; аналогично дело обстоит с опухолями и тромбами. Изображение статично, но оно дает исследователю возможность выявить аномальные структуры или наросты, а кроме того, сравнивая время от времени томограммы, можно обнаружить масштабные положительные изменения, например восстановление мозга после повреждения, полученного после сильного удара или серьезной травмы головы.
В некоторых случаях рекомендуется вначале сделать ЭЭГ как первое или предварительное сканирование мозга, которое показывает общий уровень активности в различных его частях. Для этого к определенным точкам на голове прикрепляются датчики, очень чувствительные к электрическим излучениям мозга, – электроды (современные исследователи, вместо того чтобы прикреплять их прямо к коже головы, как это делалось раньше, предпочитают использовать электродную сетку, которая накидывается на голову). Технологический прогресс привел к тому, что сегодня ЭЭГ дает куда более правдивую картину работы мозга, чем раньше. Что касается старых ЭЭГ, то это все равно что стоять на улице за стенами фабрики, стараясь по доносящемуся оттуда шуму определить, что именно там происходит. Тем не менее, даже несмотря на их несовершенство, с помощью ЭЭГ удалось выявить общие симптомы и закономерности деятельности мозга, например альфа-, бета- и дельта-волны, связанные с различными психическими состояниями: альфа-волны – с расслабленным состоянием, бета-волны – с состояниями бдительности и бодрствования, а дельта-волны – с состоянием глубокого сна (более подробно мы рассмотрим их в главе 13).
У этого метода сканирования множество вариаций, таких, например, как магнитоэнцефалография (МЭГ), при которой для определения изменений в магнитной деятельности мозга используются так называемые сверхпроводящие квантовые интерференционные датчики (СКВИД). Эти датчики невероятно чувствительны и способны обнаружить мельчайшие отклонения в магнитном поле вокруг мозга, так что их можно закреплять даже на коже головы над определенными его участками. Потенциал вызванной реакции (ПВР) – это метод измерения, с помощью которого можно выявить изменения электрической активности какой-либо области мозга, реагирующей на стимул, раздражитель или событие, активизирующие работу мозга. Раньше, как уже отмечалось выше, с этой целью применялась несколько иная методика, именуемая вызванным потенциалом, при которой в качестве стимула использовался звук, реакция мозга на который и фиксировалась соответствующим датчиком.
Транскраниальная магнитная стимуляция (ТМС) – особенно интересный способ изучения мозга. Он связан с передачей в мозг магнитной стимуляции в виде короткого магнитного импульса. Этот импульс вмешивается в работу мозга и на короткое время прерывает процесс, происходящий там в этот момент, но прерывает без каких-либо последствий. ТМС достаточно легко контролировать, поскольку эта стимуляция точечная и не охватывает весь мозг: датчики размещаются на голове лишь над определенным участком. Размещать их на боковой части головы, на височных долях или на стыке теменной и височной долей, не рекомендуется, поскольку это может привести, например, к серьезному (хотя и временному) нарушению речевой функции, что неблагоприятно повлияет на выполнение таких действий, как, скажем, чтение вслух или заучивание стихотворений наизусть. Транскраниальная стимуляция постоянным током (ТСПТ) – очень простой процесс: непосредственно к коже головы прикрепляется электрическая катушка, наносящая виртуальное повреждение, которое мешает нормальному функционированию мозга. Существует два вида ТСПТ – катодный (снижает уровень активности мозга, препятствуя выполнению задачи) и анодный (повышает уровень активности, способствуя выполнению конкретных задач).
Мозг таит в себе немало и других сюрпризов. Сканирование, в частности, показало обилие в нашем мозге так называемых зеркальных нейронов. Первые зеркальные нейроны обнаружили в двигательных системах; с их помощью удалось установить, что деятельность нашего мозга отражает не только наши собственные действия и поступки, но и действия и поступки других людей. Когда мы наблюдаем за действиями других людей, соответствующие части нашего мозга реагируют на них точно так же (т. е. с той же степенью активности), как и на наши собственные действия. Но это происходит, разумеется, только в том случае, если мы обращаем на это внимание: если мы, к примеру, следим за действиями канатоходца и представляем, каково это – балансировать на тонком канате на страшной высоте, некоторые наши клетки мозга, отвечающие за равновесие и ходьбу, тут же активизируются. Со времени первого открытия зеркальных систем они были обнаружены во многих частях мозга, в частности в тех, которые отвечают за функции социального взаимодействия: речь, разговор, память и т. д. Когда мы общаемся с другими людьми или наблюдаем за их действиями, наш мозг структурирует свою деятельность таким образом, что мы до известной степени солидаризуемся с ними и даже симпатизируем им. Мы гораздо социальнее, нежели думаем! Если вы найдете в себе силы продолжить чтение этой книги, то убедитесь, что по ходу повествования мы довольно часто будем сталкиваться с зеркальными нейронами.
Фокусные точки1. Мозг состоит из нервных клеток, называемых нейронами, которые, будучи связанными между собой, шлют и передают сообщения всему мозгу и остальным частям тела.
2. Сообщения в мозге передаются в форме электрических импульсов от одного нейрона другому при помощи особых химических веществ, называемых нейротрансмиттерами (или нейромедиаторами).
3. Нервные связи развиваются по мере того, как мы обучаемся чему-то новому, так что мозг обладает способностью адаптации к повреждениям даже в зрелом возрасте. Это его свойство известно как нейропластичность.
4. Левая сторона мозга контролирует правую сторону тела, и наоборот. Некоторые другие функции тоже латеризованы, т. е. управляются одной стороной мозга или другой, но их не так много, как принято считать.
5. Раньше ученым при исследованиях мозга приходилось лишь иметь дело с пациентами, получившими травму мозга, изучать мозг животных или полагаться на ЭЭГ. Сегодня же сканирование мозга позволяет изучать его в процессе функциональной деятельности. Существуют самые различные виды сканирования, среди которых наиболее употребимыми являются ПЭТ, КАТ и МРТ.
Следующий этапВ первых двух главах мы обрисовали общую картину мозга: что он собой представляет и как работает. Со следующей главы мы начинаем специфическое изучение различных его частей и того, как благодаря их совокупной работе мы ощущаем себя людьми. А начнем мы с рассмотрения того, каким нам видится этот мир с точки зрения его зрительного восприятия.
Глава 3. Как мы распознаем то, что видим
Из этой главы вы узнаете:
♦ как работает зрительная система;
♦ что такое слепозрение;
♦ как мы видим и различаем предметы;
♦ как мы распознаем движение;
♦ как мы различаем других людей.
Наше зрение – это что-то удивительное: мы можем видеть и различать предметы как на расстоянии, так и вблизи; как многоцветные, так и одноцветные; как движущиеся, так и неподвижные; как в полутьме, так и при ярком свете. Хотя некоторые животные обладают более острым зрением в более широком диапазоне электромагнитного спектра, чем мы, тем не менее наша зрительная система дает нам богатейшую информацию об окружающем мире и является практически идеальной для таких легкоприспосабливающихся социальных существ, как мы. Вот почему зрение – самый важный наш орган чувств из всех; настолько важный, что в стремлении помочь людям с ограниченной способностью видеть или полностью незрячим мы даже изобрели различные, подчас весьма сложные методы преодоления этой особенности организма, но при этом совершенно не уделяем внимания людям с ограниченным обонянием, с трудом или нечетко различающим запахи. Это как раз свидетельствует о том, что зрение мы ставим превыше всего.
Как же работает зрение? Оно базируется, разумеется, на восприятии света, ибо только свет дает нашим глазам всю необходимую информацию. Мозг, как мы уже знаем, работает за счет электрических импульсов, поэтому мы выработали ряд сложных структур для перевода световой информации в электрическую. Начало всему – наши глаза, которые организованы таким образом, чтобы воспринимать свет (точнее, фотоны) и проецировать его на сетчатую оболочку глаза – сетчатку, – представляющую собой слой клеток на задней стороне глазного яблока. В этих клетках наличествуют химические вещества, которые, реагируя на свет, генерируют электрические импульсы. Эти импульсы затем передаются от одной нервной клетки другой и большинство из них в конце концов попадают в затылочную часть мозга, которую мы называем зрительной корой. Зрительная кора – это довольно обширная область головного мозга, являющаяся основой нашего сознательного визуального опыта. Однако на этом пути информационный материал подвергается всесторонней сортировке.
Рисунок 3.1. Зрительные зоны головного мозга
Зрение и слепозрение
Визуальная информация от глаз до мозга может идти несколькими путями, и многие из них с точки зрения эволюции очень древние. Развивая более сложные системы, мы сохранили те, которыми обладали ранее, а поскольку люди – высокоразвитые существа, то мы выработали не один, а несколько различных способов, с помощью которых световая информация воздействует на наш мозг. Иногда это приводит к интересным последствиям.
Вам когда-нибудь приходилось заниматься чем-то интересным и в минуту наиболее глубокой увлеченности делом вдруг насторожиться? Что-то случилось во внешней среде и привлекло ваше внимание, но только гораздо позже вы понимаете, что к чему. Просто внутри вас сработал один из древних механизмов. Из главы 1 мы уже знаем, что два верхних холмика четверохолмия среднего мозга напрямую связаны с нашими системами сигнализации и оповещения. Они непосредственно принимают информацию от наших сенсорных рецепторов, поэтому, если что-то вдруг случается, мы быстро реагируем на это. Внезапное изменение интенсивности света или тональности звука вызывает автоматическую реакцию, причем мгновенную, так что мы даже не успеваем ни о чем подумать. Мысль приходит позже.
Если вам когда-либо доводилось бодрствовать всю ночь, то вы, вероятно, помните, что ночью вы боролись со сном, но к тому времени, когда занялась заря и разгорелся день, вы уже чувствовали себя совершенно проснувшимся. Днем мы чувствуем себя более бодрыми, чем в ночные часы, и происходит это потому, что сетчатка и гипоталамус напрямую связаны между собой нейронами. Эта прямая связь является источником информации обо всем, происходящем и днем, и ночью, благодаря чему гипоталамус может регулировать наши биологические ритмы. Разумеется, искусственный свет изрядно их нарушает, но не отменяет: основные биологические ритмы все равно остаются при нас, и они-то как раз и реагируют на свет, причем даже у людей, лишенных зрения.
Обращали ли вы внимание на то, как привлекают к себе взгляд движущиеся предметы? Если вы смотрите на сцену и вдруг замечаете, что в ее уголке что-то движется, вы мгновенно переводите взгляд в ту сторону – и вам уже не до игры актеров. Это еще один очень эффективный механизм выживания, который помогает нам заметить потенциального хищника или другого человека. Наша зрительная система без промедления концентрируется на движении, поскольку в этот момент информация, передающаяся в основную зрительную кору, идет в обход обычных проводящих каналов и передается другим путем – напрямую от таламуса к зоне V5 зрительной коры. Зона V5 – это та часть зрительной области мозга, которая отвечает за регистрацию визуального движения, и наличие столь прямого пути передачи информации означает, что мы можем подмечать любые движения в пространстве вокруг себя, даже не отдавая себе полностью отчета в том, что видим.
В общем счете исследователи выявили порядка 10 различных механизмов или, лучше сказать, проводящих путей, по которым информация от сетчатки передается в различные части мозга. Эти открытия дали нам возможность объяснить один из самых непонятных аспектов человеческого зрения, называемый слепозрением. Слепозрение открыл в 1972 году британский врач и психолог Лоуренс Вайскранц, изучавший в те годы слепых людей, которые, однако, реагировали на те или иные зрительные раздражители. Эти люди могли, например, указать на движущийся объект или даже пригнуться, если некий предмет летел прямо на них, хотя они его не видели и никто им об этом не сообщал. Они его просто чувствовали, словно заранее угадывали или догадывались о его присутствии, причем даже в условиях тщательно проводимых лабораторных испытаний. У этих людей (и многих других, с которыми позже проводились исследования) была повреждена зрительная кора, в силу чего они не могли сознательно обрабатывать зрительную информацию. Они были слепыми, но другие, более древние аспекты их визуальной системы по-прежнему функционировали.
Имеются и другие, весьма странные формы слепоты. У людей возникает сугубо специфическая проблема со зрением, как правило из-за того, что их мозг поражает инфекция. Вероятно, самая распространенная форма частичной или выборочной слепоты – это категориальная слепота, при которой человек совершенно не способен различать предметы или явления особой категории. Чаще всего это относится к животным: такие люди могут распознавать все вокруг, кроме, например, собак, кошек или каких-то других животных. Когда люди их видят, они просто оказываются в тупике, ибо не в состоянии определить, кто же это. Категориальная слепота может проявляться различными путями: одни люди прекрасно различают движущиеся предметы и явления природного мира, но не в состоянии распознать искусственные, сконструированные объекты вроде инструментов или телефонов; другие могут распознавать животных и объекты, но совершенно не в состоянии понять, что за еда перед ними на тарелке. Они могут есть эту пищу и даже определять ее на вкус, но не могут распознать, что это за пища, когда смотрят на нее.
Категориальная слепота наступает из-за повреждения глубинных областей зрительной системы – тех областей мозга, где происходит распознавание воспринимаемых образов. Поэтому те категории предметов, которые ныне доступны или недоступны нашему зрительному восприятию, тесно связаны с нашей эволюционной историей. На ранних стадиях нашей эволюции умение отличать зверей и животных от предметов и прочих неодушевленных объектов являлось фундаментальным свойством в борьбе за выживание; то же относится и к умению распознавать пищу. Тот факт, что некоторые специфические категории каким-то образом выпадают из поля нашего зрения, объясняется тем обстоятельством, что все жизненно насущные категории настолько для нас важны, что они жестко «закреплены» в нашем мозге – настолько жестко, что мы в гораздо большей мере готовы к восприятию уже утвердившихся классов (животные, пища, объекты), чем к восприятию других, более современных (дома, транспорт, витрины, вывески). И когда одна из таких жестко «закрепленных» категорий вследствие повреждения мозга вдруг «выбраковывается», она полностью выпадает из нашего поля зрения.
Как мы видим
Та способность, которую мы в целом определяем как зрение (обычное зрение, как мы его понимаем и осознаем), используется для передачи зрительной информации главным маршрутом, на протяжении долгих лет подробно описанным в медицинской и узкоспециализированной литературе. Зрение начинается с особых светочувствительных клеток, расположенных в сетчатке глаза и называемых фоторецепторами. Они подразделяются на два вида: невероятно чувствительные палочковидные клетки, различающие яркость света, и клетки-колбочки, распознающие цвета и активно функционирующие только при ярком свете. Назначение обоих видов клеток – трансдукция, т. е. преобразование световой информации в понятные для мозга электрические импульсы. Этот процесс возможен благодаря тому, что свет, попадая в клетку, обесцвечивает там особые химические вещества, в результате чего клетка под их действием меняет свой электрический потенциал.
Рисунок 3.2. Структура сетчатки
Как только информация преобразуется в электрические импульсы, она передается на второй слой клеток сетчатки – в так называемые биполярные нейроны. Они осуществляют первичную обработку информации: реагируют или на светлые области на темном фоне, или на темные области на светлом фоне. Эта первичная и достаточно примитивная обработка позволяет выявить простейшие атрибуты или свойства окружающей среды, например водоем или море, так как они в целом отражают больше света, чем обрамляющая их суша. Поскольку самой яркой областью обычно является небо, во всяком случае в дневное время, эта их особенность позволяет различать яркие области на земле (или ближе к нижней части визуального поля, если вас больше интересует чисто техническая специфика процесса).
Для многих животных умение воспринимать любое движение – это вопрос жизни и смерти, поэтому обработка визуальной картины движения является базовой в зрительной системе. Третий слой сетчатки – это ганглиозные клетки, отслеживающие движение путем реакции на изменения и различия, происходящие в поле зрения. Каждая ганглиозная клетка имеет свое собственное рецептивное поле, сосредоточенное на одном участке сетчатки и простирающееся вовне. Одни клетки реагируют на свет, падающий на окружающую область, а не в середину, тогда как другие действуют совершенно противоположным образом, реагируя на свет, падающий в середину, а не на окружающую область. Они также реагируют на малейшие отклонения от этой закономерности, что делает их особенно чувствительными и восприимчивыми к движению.