bannerbanner
The Principles of Biology, Volume 1 (of 2)
The Principles of Biology, Volume 1 (of 2)полная версия

Полная версия

The Principles of Biology, Volume 1 (of 2)

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
56 из 59

It is thus manifest, I think, that I have not fallen into the alleged inconsistency. Nevertheless, I admit that your reviewer was justified in inferring this inconsistency; and I take blame to myself for not having seen that the statement, as I have left it, is open to misconstruction.

* * * * *

I pass now to the second allegation – that in ascribing to certain specific molecules, which I have called "physiological units," the aptitude to build themselves into the structure of the organism to which they are peculiar, I have abandoned my own principle, and have assumed something beyond the re-distribution of Matter and Motion. As put by the reviewer, his case appears to be well made out; and that he is not altogether unwarranted in so putting it, may be admitted. Nevertheless, there does not in reality exist the supposed incongruity.

Before attempting to make clear the adequacy of the conception which I am said to have tacitly abandoned as insufficient, let me remove that excess of improbability the reviewer gives to it, by the extremely-restricted meaning with which he uses the word mechanical. In discussing a proposition of mine he says: —

"He then cites certain remarks of Mr. Paget on the permanent effects wrought in the blood by the poison of scarlatina and small-pox, as justifying the belief that such a 'power' exists, and attributes the repair of a wasted tissue to 'forces analogous to those by which a crystal reproduces its lost apex.' (Neither of which phenomena, however, is explicable by mechanical causes.)"

Were it not for the deliberation with which this last statement is made, I should take it for a slip of the pen. As it is, however, I have no course left but to suppose the reviewer unaware of the fact that molecular actions of all kinds are now not only conceived as mechanical actions, but that calculations based on this conception of them, bring out the results that correspond with observation. There is no kind of re-arrangement among molecules (crystallization being one) which the modern physicist does not think of. and correctly reason upon, in terms of forces and motions like those of sensible masses. Polarity is regarded as a resultant of such forces and motions; and when, as happens in many cases, light changes the molecular structure of a crystal, and alters its polarity, it does this by impressing, in conformity with mechanical laws, new motions on the constituent molecules. That the reviewer should present the mechanical conception under so extremely limited a form, is the more surprising to me because, at the outset of the very work he reviews, I have, in various passages, based inferences on those immense extensions of it which he ignores; indicating, for example, the interpretation it yields of the inorganic chemical changes effected by heat, and the organic chemical changes effected by light (Principles of Biology, § 13).

Premising, then, that the ordinary idea of mechanical action must be greatly expanded, let us enter upon the question at issue – the sufficiency of the hypothesis that the structure of each organism is determined by the polarities of the special molecules, or physiological units, peculiar to it as a species, which necessitate tendencies towards special arrangements. My proposition and the reviewer's criticism upon it, will be most conveniently presented if I quote in full a passage of his from which I have already extracted some expressions. He says: —

"It will be noticed, however, that Mr. Spencer attributes the possession of these 'tendencies,' or 'proclivities,' to natural inheritance from ancestral organisms; and it may be argued that he thus saves the mechanist theory and his own consistency at the same time, inasmuch as he derives even the 'tendencies' themselves ultimately from the environment. To this we reply, that Mr. Spencer, who advocates the nebular hypothesis, cannot evade the admission of an absolute commencement of organic life on the globe, and that the 'formative tendencies,' without which he cannot explain the evolution of a single individual, could not have been inherited by the first organism. Besides, by his virtual denial of spontaneous generation, he denies that the first organism was evolved out of the inorganic world, and thus shuts himself off from the argument (otherwise plausible) that its 'tendencies' were ultimately derived from the environment."

This assertion is already in great measure disposed of by what has been said above. Holding that, though not "spontaneously generated," those minute portions of protoplasm which first displayed in the feeblest degree that changeability taken to imply life, were evolved, I am not debarred from the argument that the "tendencies" of the physiological units are derived from the inherited effects of environing actions. If the conception of a "first organism" were a necessary one, the reviewer's objection would be valid. If there were an "absolute commencement" of life, a definite line parting organic matter from the simplest living forms, I should be placed in the predicament he describes. But as the doctrine of Evolution itself tacitly negatives any such distinct separation; and as the negation is the more confirmed by the facts the more we know of them; I do not feel that I am entangled in the alleged difficulty. My reply might end here; but as the hypothesis in question is one not easily conceived, and very apt to be misunderstood, I will attempt a further elucidation of it.

Much evidence now conspires to show that molecules of the substances we call elementary are in reality compound; and that, by the combination of these with one another, and re-combinations of the products, there are formed systems of systems of molecules, unimaginable in their complexity. Step by step as the aggregate molecules so resulting, grow larger and increase in heterogeneity, they become more unstable, more readily transformable by small forces, more capable of assuming various characters. Those composing organic matter transcend all others in size and intricacy of structure; and in them these resulting traits reach their extreme. As implied by its name protein, the essential substance of which organisms are built, is remarkable alike for the variety of its metamorphoses and the facility with which it undergoes them: it changes from one to another of its thousand isomeric forms on the slightest change of conditions. Now there are facts warranting the belief that though these multitudinous isomeric forms of protein will not unite directly with one another, yet they admit of being linked together by other elements with which they combine. And it is very significant that there are habitually present two other elements, sulphur and phosphorus, which have quite special powers of holding together many equivalents – the one being pentatomic and the other hexatomic. So that it is a legitimate supposition (justified by analogies) that an atom of sulphur may be a bond of union among half-a-dozen different isomeric forms of protein; and similarly with phosphorus. A moment's thought will show that, setting out with the thousand isomeric forms of protein, this makes possible a number of these combinations almost passing the power of figures to express. Molecules so produced, perhaps exceeding in size and complexity those of protein as those of protein exceed those of inorganic matter, may, I conceive, be the special units belonging to special kinds of organisms. By their constitution they must have a plasticity, or sensitiveness to modifying forces, far beyond that of protein; and bearing in mind not only that their varieties are practically infinite in number, but that closely allied forms of them, chemically indifferent to one another as they must be, may coexist in the same aggregate, we shall see that they are fitted for entering into unlimited varieties of organic structures.

The existence of such physiological units, peculiar to each species of organism, is not unaccounted for. They are evolved simultaneously with the evolution of the organisms they compose – they differentiate as fast as these organisms differentiate; and are made multitudinous in kind by the same actions which make the organism they compose multitudinous, in kind. This conception is clearly representable in terms of the mechanical hypothesis. Every physicist will endorse the proposition that in each aggregate there tends to establish itself an equilibrium between the forces exercised by all the units upon each and by each upon all. Even in masses of substance so rigid as iron and glass, there goes on a molecular re-arrangement, slow or rapid according as circumstances facilitate, which ends only when there is a complete balance between the actions of the parts on the whole and the actions of the whole on the parts: the implications being that every change in the form or size of the whole, necessitates some redistribution of the parts. And though in cases like these, there occurs only a polar re-arrangement of the molecules, without changes in the molecules themselves; yet where, as often happens, there is a passage from the colloid to the crystalloid state, a change of constitution occurs in the molecules themselves. These truths are not limited to inorganic matter: they unquestionably hold of organic matter. As certainly as molecules of alum have a form of equilibrium, the octahedron, into which they fall when the temperature of their solvent allows them to aggregate, so certainly must organic molecules of each kind, no matter how complex, have a form of equilibrium in which, when they aggregate, their complex forces are balanced – a form far less rigid and definite, for the reason that they have far less definite polarities, are far more unstable, and have their tendencies more easily modified by environing conditions. Equally certain is it that the special molecules having a special organic structure as their form of equilibrium, must be reacted upon by the total forces of this organic structure; and that, if environing actions lead to any change in this organic structure, these special molecules, or physiological units, subject to a changed distribution of the total forces acting upon them will undergo modification – modification which their extreme plasticity will render easy. By this action and reaction I conceive the physiological units peculiar to each kind of organism, to have been moulded along with the organism itself. Setting out with the stage in which protein in minute aggregates, took on those simplest differentiations which fitted it for differently-conditioned parts of its medium, there must have unceasingly gone on perpetual re-adjustments of balance between aggregates and their units – actions and reactions of the two, in which the units tended ever to establish the typical form produced by actions and reactions in all antecedent generations, while the aggregate, if changed in form by change of surrounding conditions, tended ever to impress on the units a corresponding change of polarity, causing them in the next generation to reproduce the changed form – their new form of equilibrium.

This is the conception which I have sought to convey, though it seems unsuccessfully, in the Principles of Biology; and which I have there used to interpret the many involved and mysterious phenomena of Genesis, Heredity, and Variation. In one respect only am I conscious of having so inadequately explained myself, as to give occasion for a misinterpretation – the one made by the Westminster reviewer above referred to. By him, as by your own critic, it is alleged that in the idea of "inherent tendencies" I have introduced, under a disguise, the conception of "the archæus, vital principle, nisus formativus, and so on." This allegation is in part answered by the foregoing explanation. That which I have here to add, and did not adequately explain in the Principles of Biology, is that the proclivity of units of each order towards the specific arrangement seen in the organism they form, is not to be understood as resulting from their own structures and actions only; but as the product of these and the environing forces to which they are exposed. Organic evolution takes place only on condition that the masses of protoplasm formed of the physiological units, and of the assimilable materials out of which others like themselves are to be multiplied, are subject to heat of a given degree – are subject, that is, to the unceasing impacts of undulations of a certain strength and period; and, within limits, the rapidity with which the physiological units pass from their indefinite arrangement to the definite arrangement they presently assume, is proportionate to the strengths of the ethereal undulations falling upon them. In its complete form, then, the conception is that these specific molecules, having the immense complexity above described, and having correspondently complex polarities which cannot be mutually balanced by any simple form of aggregation, have, for the form of aggregation in which all their forces are equilibrated, the structure of the adult organism to which they belong; and that they are compelled to fall into this structure by the co-operation of the environing forces acting on them, and the forces they exercise on one another – the environing forces being the source of the power which effects the re-arrangement, and the polarities of the molecules determining the direction in which that power is turned. Into this conception there enters no trace of the hypothesis of an "archæus or vital principle;" and the principles of molecular physics fully justify it.

It is, however, objected that "the living body in its development presents a long succession of differing forms; a continued series of changes for the whole length of which, according to Mr. Spencer's hypothesis, the physiological units must have an 'inherent tendency.' Could we more truly say of anything, 'it is unrepresentable in thought?'" I reply that if there is taken into account an element here overlooked, the process will not be found "unrepresentable in thought." This is the element of size or mass. To satisfy or balance the polarities of each order of physiological units, not only a certain structure of organism, but a certain size of organism is needed; for the complexities of that adult structure in which the physiological units are equilibrated, cannot be represented within the small bulk of the embryo. In many minute organisms, where the whole mass of physiological units required for the structure is present, the very thing does take place which it is above implied ought to take place. The mass builds itself directly into the complete form. This is so with Acari, and among the nematoid Entozoa. But among higher animals such direct transformations cannot happen. The mass of physiological units required to produce the size as well as the structure that approximately equilibrates them, is not all present, but has to be formed by successive additions – additions which in viviparous animals are made by absorbing, and transforming into these special molecules, the organizable materials directly supplied by the parent, and which in oviparous animals are made by doing the like with the organizable materials in the "food-yelk," deposited by the parent in the same envelope with the germ. Hence it results that, under such conditions, the physiological units which first aggregate into the rudiment of the future organism, do not form a structure like that of the adult organism, which, when of such small dimensions, does not equilibrate them. They distribute themselves so as partly to satisfy the chief among their complex polarities. The vaguely-differentiated mass thus produced cannot, however, be in equilibrium. Each increment of physiological units formed and integrated by it, changes the distribution of forces; and this has a double effect. It tends to modify the differentiations already made, bringing them a step nearer to the equilibrating structure; and the physiological units next integrated, being brought under the aggregate of polar forces exercised by the whole mass, which now approaches a step nearer to that ultimate distribution of polar forces which exists in the adult organism, are coerced more directly into the typical structure. Thus there is necessitated a series of compromises. Each successive form assumed is unstable and transitional: approach to the typical structure going on hand in hand with approach to the typical bulk.

Possibly I have not succeeded by this explanation, any more than by the original explanation, in making this process "representable in thought." It is manifestly untrue, however, that I have, as alleged, re-introduced under a disguise the conception of a "vital principle." That I interpret embryonic development in terms of Matter and Motion, cannot, I think, be questioned. Whether the interpretation is adequate, must be a matter of opinion; but it is clearly a matter of fact, that I have not fallen into the inconsistency asserted by your reviewer. At the same time I willingly admit that, in the absence of certain statements which I have now supplied, he was not unwarranted in representing my conception in the way that he has done.

1

Gross misrepresentations of this statement, which have been from time to time made, oblige me, much against my will, to add here an explanation of it. The last of these perversions, uttered in a lecture delivered at Belfast by the Rev. Professor Watts, D.D., is reported in the Belfast Witness of December 18, 1874; just while a third impression of this work is being printed from the plates. The report commences as follows: – "Dr. Watts, after showing that on his own confession Spencer was indebted for his facts to Huxley and Hooker, who," &c., &c.

Wishing in this, as in other cases, to acknowledge indebtedness when conscious of it, I introduced the words referred to, in recognition of the fact that I had repeatedly questioned the distinguished specialists named, on matters beyond my knowledge, which were not dealt with in the books at my command. Forgetting the habits of antagonists, and especially theological antagonists, it never occurred to me that my expression of thanks to my friends for "information where my own was deficient," would be turned into the sweeping statement that I was indebted to them for my facts.

Had Professor Watts looked at the preface to the second volume (the two having been published separately, as the prefaces imply), he would have seen a second expression of my indebtedness "for their valuable criticisms, and for the trouble they have taken in checking the numerous statements of fact on which the arguments proceed" – no further indebtedness being named. A moment's comparison of the two volumes in respect of their accumulations of facts, would have shown him what kind of warrant there was for his interpretation.

Doubtless the Rev. Professor was prompted to make this assertion by the desire to discredit the work he was attacking; and having so good an end in view, thought it needless to be particular about the means. In the art of dealing with the language of opponents, Dr. Watts might give lessons to Monsignor Capel and Archbishop Manning.

December 28th, 1874.

2

In this passage as originally written (in 1862) they were described as incondensible; since, though reduced to the density of liquids, they had not been liquefied.

3

Here and hereafter the word "atom" signifies a unit of something classed as an element, because thus far undecomposed by us. The word must not be supposed to mean that which its derivation implies. In all probability it is not a simple unit but a compound one.

4

The name hydro-carbons was here used when these pages were written, thirty-four years ago. It was the name then current. In this case, as in multitudinous other cases, the substitution of newer words and phrases for older ones, is somewhat misleading. Putting the thoughts of 1862 in the language of 1897 gives an illusive impression of recency.

5

It will perhaps seem strange to class oxygen as a crystalloid. But inasmuch as the crystalloids are distinguished from the colloids by their atomic simplicity, and inasmuch as sundry gases are reducible to a crystalline state, we are justified in so classing it.

6

The remark made by a critic to the effect that in a mammal higher temperature diminishes the rate of molecular change in the tissues, leads me to add that the exhalation I have alleged is prevented if the heat rises above the range of variation normal to the organism; since, then, unusually rapid pulsations with consequent inefficient propulsion of the blood, cause a diminished rate of circulation. To produce the effect referred to in the text, heat must be associated with dryness; for otherwise evaporation is not aided. General evidence supporting the statement I have made is furnished by the fact that the hot and dry air of the eastern deserts is extremely invigorating; by the fact that all the energetic and conquering races of men have come from the hot and dry regions marked on the maps as rainless; and by the fact that travellers in Africa comment on the contrast between the inhabitants of the hot and dry regions (relatively elevated) and those of the hot and moist regions: active and inert respectively.

7

The increase of respiration found to result from the presence of light, is probably an indirect effect. It is most likely due to the reception of more vivid impressions through the eyes, and to the consequent nervous stimulation. Bright light is associated in our experience with many of our greatest outdoor pleasures, and its presence partially arouses the consciousness of them, with the concomitant raised vital functions.

8

To exclude confusion it may be well here to say that the word "atom" is, as before explained, used as the name for a unit of a substance at present undecomposed; while the word "molecule" is used as the name for a unit of a substance known to be compound.

9

On now returning to the subject after many years, I meet with some evidence recently assigned, in a paper read before the Royal Society by Mr. J. W. Pickering, D.Sc. (detailing results harmonizing with those obtained by Prof. Grimaux), showing clearly how important an agent in vital actions is this production of isomeric changes by slight changes of conditions. Certain artificially produced substances, simulating proteids in other of their characters and reactions, were found to simulate them in coagulability by trifling disturbances. "In the presence of a trace of neutral salt they coagulate on heating at temperatures very similar to proteid solutions." And it is shown that by one of these factitious organic colloids a like effect is produced in coagulating the blood, to that "produced by the intravenous injection of a nucleoproteid."

10

After this long interval during which other subjects have occupied me, I now find that the current view is similar to the view above set forth, in so far that a small molecular disturbance is supposed suddenly to initiate a great one, producing a change compared to an explosion. But while, of two proposed interpretations, one is that the fuse is nitrogenous and the charge a carbo-hydrate, the other is that both are nitrogenous. The relative probabilities of these alternative views will be considered in a subsequent chapter.

11

When writing this passage I omitted to observe the verification yielded of the conclusion contained in § 15 concerning the part played in the vital processes by the nitrogenous compounds. For these vegeto-alkalies, minute quantities of which produce such great effects in exalting the functions (e. g., a sixteenth of a grain of strychnia is a dose), are all nitrogenous bodies, and, by implication, relatively unstable bodies. The small amounts of molecular change which take place in these small quantities of the vegeto-alkalies when diffused through the system, initiate larger amounts of molecular change in the nitrogenous elements of the tissues.

But the evidence furnished a generation ago by these vegeto-alkalies has been greatly reinforced by far more striking evidence furnished by other nitrogenous compounds – the various explosives. These, at the same time that they produce by their sudden decompositions violent effects outside the organism, also produce violent effects inside it: a hundredth of a grain of nitro-glycerine being a sufficient dose. Investigations made by Dr. J. B. Bradbury, and described by him in the Bradshaw Lecture on "Some New Vaso-Dilators" (see The Lancet, Nov. 16, 1895), details the effects of kindred bodies – methyl-nitrate, glycol-dinitrate, erythrol-tetranitrate. The first two, in common with nitro-glycerine, are stable only when cool and in the dark – sunlight or warmth decomposes them, and they explode by rapid heating or percussion. The fact which concerns us here is that the least stable – glycol-dinitrate – has the most powerful and rapid physiological effect, which is proportionately transient. In one minute the blood-pressure is reduced by one-fourth and in four minutes by nearly two-thirds: an effect which is dissipated in a quarter of an hour. So that this excessively unstable compound, decomposing in the body in a very short time, produces within that short time a vast amount of molecular change: acting, as it seems, not through the nervous system, but directly on the blood-vessels.

На страницу:
56 из 59