bannerbanner
Studies in the Theory of Descent, Volume I
Studies in the Theory of Descent, Volume Iполная версия

Полная версия

Studies in the Theory of Descent, Volume I

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
18 из 25

It is not here my intention to go through all the groups of Lepidoptera in this manner. The instances adduced are quite sufficient to prove that longitudinal stripes occur wherever we should expect to find them, and that they really possess the biological significance which I have ascribed to them. That these markings are occasionally converted into an adaptive imitation of certain special parts of a plant, is shown by the larvæ of many moths, such for example as Chesias Spartiata, which lives on broom (Spartium Scoparium), its longitudinal stripes deceptively resembling the sharp edges of the stems of this plant.143

3. Oblique striping. Can the lilac and white oblique stripes on the sides of a large green caterpillar, such as those of Sphinx Ligustri; or the red and white, or white, black, and red stripes of Smerinthus Tiliæ and Sphinx Drupiferarum respectively, be of any possible use? Have we not here just one of those cases which clearly prove that such a character is purely morphological, and worthless for the preservation of the individual? Does not Nature occasionally sport with purposeless forms and colours; or, as it has often been poetically expressed, does she not here give play to the wealth of her phantasy?

At first sight this indeed appears to be the case. We might almost doubt the adaptive importance of the green ground-colour on finding coloured stripes added thereto, and thus – as one might suppose – abolishing the beneficial action of this ground-colour, by making the insect strikingly conspicuous. But this view would be decidedly incorrect, since oblique stripes are of just the same importance as longitudinal stripes. The former serve to render the caterpillar difficult of detection, by making it resemble, as far as possible, a leaf; they are imitations of the leaf-veins.

Nobody who is in the habit of searching for caterpillars will doubt that, in cases where the oblique stripes are simply white or greenish-white, it is extremely difficult to see the insect on its food-plant, e. g. S. Ocellatus on Salix; not only because it possesses the colour of the leaves, but no less because its large body does not present an unbroken green surface, which would bring it into strong contrast with the leaves, and thus arrest the attention. In the case of the species named, the coloured area of the body is divided by oblique parallel stripes, just in the same manner as a willow leaf. In such instances of course we have not presented to us any special imitation of a leaf with all its details – there is not a perfect resemblance of the insect to a leaf, but only an arrangement of lines and interspaces which does not greatly differ from the division of a leaf by its ribs.

That this view is correct is shown by the occurrence of this form of marking. It is on the whole rare, being found, besides in many Sphingidæ, in isolated cases in various families, but is always confined to those larvæ which live on ribbed leaves, and never occurring in species which feed on grasses or on trees with needle-shaped leaves. This has already been shown with respect to the Sphingidæ, in which the oblique stripes are only completely developed in the subfamilies Smerinthinæ and Sphinginæ. The species of Smerinthus all live on trees such as willows, poplars, lime, oak, &c., and all possess oblique stripes. The genus Anceryx also belongs to the Sphinginæ, and these caterpillars, as far as known, live on trees with needle-shaped leaves. The moths of this last genus are very closely allied to the species of Sphinx, not only in form and colour, but also in many details of marking. The larvæ are however different, this distinction arising entirely from their adaptation to needle-shaped leaves, the Sphinx caterpillars being adapted to ordinary foliage. The species of Anceryx, as has been already shown, are brown mixed with green, and never possess even a trace of the oblique stripes, but have a latticed marking, consisting of many interrupted lines, which very effectively serves to conceal them among the needles and brown bark of the Coniferæ.

Of the Sphinginæ living on plants with ordinary foliage, not a single species is without oblique stripes. I am acquainted with ten species of caterpillars and their respective food-plants, viz. Sphinx Carolina, Convolvuli, Quinquemaculata, Prini, Drupiferarum, Ligustri; Macrosila Rustica and Cingulata; Dolba Hylæus and Acherontia Atropos.

Besides among the Sphinginæ, oblique stripes occur in the larvæ of certain butterflies, viz. Apatura Iris, Ilia, and Clytie, all of which live on forest trees (aspen and willows), and are excellently adapted to the leaves by their green colour. In addition to these, I am acquainted with the larvæ of some few moths, viz. of Aglia Tau and Endromis Versicolora, both of which also live on forest trees.

Oblique stripes also occasionally occur in the smaller caterpillars of Noctuæ, Geometræ, and even in those of certain Pyrales, in all of which they are shorter and differently arranged. In these cases also, my theory of adaptation holds good, but it would take us too far if I attempted to go more closely into them. I will here only mention the extraordinary adaptation shown by the caterpillar of Eriopus Pteridis. This little Noctuid lives on Pteris Aquilina; it possesses the same green colour as this fern, and has double oblique white stripes crossing at a sharp angle on each segment, these resembling the lines of sori of the fern-frond so closely, that the insect is very difficult to perceive.

After all these illustrations it can no longer remain doubtful that the oblique stripes of the Sphingidæ are adaptive. But how are the coloured edges bordering these stripes in so many species to be explained?

I must confess that I long doubted the possibility of being able to ascribe any biological value to this character, which appeared to me only conspicuous, and not protective. Cases may actually occur in which the brightly coloured edges of the oblique stripes make the caterpillar conspicuous – just in the same manner as any marking may bring about a conspicuous appearance by presenting a striking contrast of colour. I am acquainted with no such instance, however. As a rule, in all well-adapted caterpillars, considering their colour in its totality, this is certainly not the case. The coloured edges, on the contrary, enhance the deceptive appearance by representing the oblique shadows cast by the ribs on the under-side of the leaf; all these caterpillars rest underneath the leaves, and never on the upper surface.

This explanation may, perhaps, at first sight appear far-fetched, but if the experiment be made of observing a caterpillar of Sphinx Ligustri on its food-plant, not immediately before one’s eyes in a room, but at a distance as under natural conditions, it will be found that the violet edges do not stand out brightly, but show a colour very similar to that of the shadows playing about the leaves. The coloured edges, in fact, produce a more effective breaking up of the large green surface of the caterpillar’s body, than whitish stripes alone. Of course if the insect was placed on a bare twig in the sun, it would be easily visible at a distance; the larva never rests in such a position, however, but always in the deep shadow of the leaves, in which situation the coloured edges produce their peculiar effect. It may be objected that the oblique white stripes, standing simply on a dark green ground-colour, would produce the same effect, and that my explanation therefore leaves the bright colouring of these edges still unaccounted for. I certainly cannot say why in Sphinx Ligustri these edges are lilac, and in S. Drupiferarum, S. Prini, and Dolba Hylæus red, nor why they are black and green in Macrosila Rustica, and blue in Acherontia Atropos. If we knew exactly on what plants these caterpillars fed originally, we might perhaps indulge in comparing with an artistic eye the shadows playing about their leaves, seeing in one case more red, and in another more blue or violet. The coloured stripes of the Sphingidæ must be regarded as the single strokes of a great master on the countenance of a human portrait. Looked into closely, we see red, blue, or even green spots and strokes; but all these colours, conspicuous when close, disappear on retreating, a general effect of colour being then produced, which cannot be precisely described by words.

Quite in accordance with this explanation, we see caterpillars with the brightest coloured stripes concealing themselves in the earth by day, and betaking themselves to their food-plants only in the dusk of the evening or dawn of morning and even during the night; i. e. in a light so faint that feeble colours would produce scarcely any effect. The bright blue of Acherontia Atropos, for example, would give the impression of oblique shadows without any distinctive colour.

It is precisely the case of this last caterpillar, which formerly appeared to me to present insurmountable difficulties to the explanation of the coloured stripes by adaptation, and I believed that this insect would have to be classed with those species which are brightly coloured because they are distasteful, and are avoided by birds. But although we have no experiments on this point, I must reject this view. Unfortunately, we know scarcely anything of the ontogeny of this caterpillar; but we know at least that the young larvæ (stage four) are greener than the more purely yellow ones of the fifth stage (which, however, are also frequently green), and we know further that some adults are of a dark brownish-grey, without any striking colours. From analogy with the dimorphism of the species of Chærocampa and Sphinx, fully considered previously, it must therefore be concluded that in this case also, a new process of adaptation has commenced – that the caterpillar is becoming adapted to the soil in and on which it conceals itself by day.144 An insect which acquires undoubted protective colours cannot, however, be classed with those which possess an immunity from hostile attacks.

That the coloured edges are correctly explained as imitations of the oblique shadows of the leaf-ribs, may also be proved from another point of view. Let us assume, for the sake of argument, that these coloured stripes are not adaptive, and that they have not been produced by natural selection, but by a hypothetical phyletic force. We should then expect to see them appear at some period in the course of the phyletic development – perhaps at first only in solitary individuals, then in several, and finally in all; but we certainly could not expect that at first single, irregular, coloured spots should arise in the neighbourhood of the oblique white stripes – that these spots should then multiply, and fusing together, should adhere to the white stripes, so as to form an irregular spot-like edge, which finally becomes formed into a straight, uniformly broad stripe. The phyletic development of the coloured edges takes place, however, in such a manner, the species of Smerinthus, as has already been established, showing this with particular distinctness. In S. Tiliæ the course of development can be followed till the somewhat irregular red border is formed. In the species of Sphinx this border has become completely linear. It is very possible that the ontogeny of S. Ligustri or Drupiferarum would reveal the whole process, although it may also be possible that owing to the contraction of the development, much of the phylogeny is already lost.

I have now arrived at the consideration of the last kind of marking which occurs in the Sphingidæ, viz.: —

4. Eye-spots and Ring-spots.– These markings, besides among the Sphingidæ, are found only in a very few caterpillars, such as certain tropical Papilionidæ and Noctuæ. I know nothing of the conditions of life and habits of these species, however, and without such knowledge it is impossible to arrive at a complete explanation.

With Darwin, I take an eye-spot to be “a spot within a ring of another colour, like the pupil within the iris,” but to this central spot “concentric zones” maybe added. In the Chærocampa larvæ and in Pterogon Œnotheræ, in which complete ocelli occur, there are always three zones – a central spot, the pupil, or, as I have called it, the “nucleus;” then a light zone, the “mirror;” and, surrounding this again, a dark zone (generally black), the “ground-area.”

As ring-spots I will consider those ocelli which are without the nucleus (pupil), and which are not therefore, strictly speaking, deceptive imitations of an eye, but present a conspicuous light spot surrounded by a dark zone.

Between these two kinds of markings there is, however, no sharp boundary, and morphologically they can scarcely be separated. Species with ring-spots sometimes have nuclei, and ocellated larvæ in some cases possess only a pale spot instead of a dark pupil. I deal here with the two kinds separately, because it happens that they appear in two distinct genera, in each of which they have their special developmental history. Ring-spots originate in a different position, and in another manner than eye-spots; but it must not, on this account, be assumed without further inquiry, that they are called into existence by the same causes; they must rather be investigated separately, from their origin.

Eye-spots are possessed by the genera Chærocampa and Pterogon; ring-spots by the genus Deilephila. In accordance with the data furnished by the above-given developmental histories, the origination of these markings in the two genera may be thus represented: —

In the genera named, eye-spots and ring-spots are formed by the transformation of single portions of the subdorsal line.

In Chærocampa the primary ocelli originate on the fourth and fifth segments by the detachment of a curved portion of the subdorsal, this fragment becoming the “mirror,” and acquiring a dark encircling zone (“ground-area”). The nucleus (pupil) is added subsequently.

In Deilephila we learn from the development of D. Hippophaës, that the primary annulus arises on the segment bearing the caudal horn (the eleventh) by the deposition of a red spot on the white subdorsal line, which is somewhat enlarged in this region. The formation of a dark “ground-area” subsequently occurs, and with this, at first the partial, and then the complete, detachment of the mirror-spot from the subdorsal line takes place.

In both genera the spots arise at first locally on one or two segments, from which they are transferred to the others as a secondary character. In Chærocampa this transference is chiefly backwards, in Deilephila invariably forwards.

We have now to inquire whether complete eye-spots – such as those of the Chærocampa larvæ – have any significance at all, and whether they are of biological importance. It is clear at starting, that these spots do not belong to that class of markings which make their possessors more difficult of detection; they have rather the opposite effect.

We might thus be disposed to class ocellated caterpillars with those “brightly coloured” species which, like the Heliconinæ and Danainæ among butterflies, possess a disgusting taste, and which to a certain extent bear the signal of their distastefulness in their brilliant colours. But even if I had not found by experiment that our native Chærocampa larvæ were devoured by birds and lizards, and that they are not therefore distasteful to these insect persecutors, from the circumstance that these caterpillars are all protectively coloured, it could have been inferred that they do not belong to this category. It has been found that all adaptively coloured caterpillars are eaten, and one and the same species cannot possibly be at the same time inconspicuously (adaptively) and conspicuously coloured; the one condition excludes the other.

What other significance can eye-spots possess than that of making the insects conspicuous? Had we to deal with sexually mature forms, we should, in the first place, think of the action of sexual selection, and should regard these spots as objects of taste, like the ocelli on the feathers of the peacock and argus-pheasant. But we are here concerned with larvæ, and sexual selection is thus excluded.

The eye-spots must therefore possess some other significance, or else they are of no importance at all to the life of the insect, and are purely “morphological characters;” in which case, supposing this could be proved, they would owe their existence exclusively to forces innate in the organism itself – a view which very closely approaches the admission of a phyletic vital force.

I am of opinion, however, that eye-spots certainly possess a biological value as a means of terrifying – they belong to that numerous class of characters which occur in the most diverse groups of animals, and which serve the purpose of making their possessors appear as alarming as possible.

The caterpillars of the Sphingidæ are known to behave themselves in different manners when attacked. Some species, such, for instance, as Sphinx Ligustri and Smerinthus Ocellatus, on the approach of danger assume the so-called Sphinx attitude; if they are then actually seized, they dash themselves madly to right and left, by this means not only attempting to get free, but also to terrify their persecutor. This habit frequently succeeds with men, and more especially with women and children; perhaps more easily in these cases than with their experienced foes, birds.

The ocellated Chærocampa larvæ behave differently. They remain quiet on being attacked, and do not put on a Sphinx-like attitude, but only withdraw the head and three small front segments into the large fourth segment, which thus becomes much swollen, and is on this account taken for the head of the insect by the inexperienced.145 Now the large eye-spots are situated on the fourth segment, and it does not require much imagination to see in such a caterpillar an alarming monster with fiery eyes, especially if we consider the size which it must appear to an enemy such as a lizard or small bird. Fig. 28 represents the larva of C. Porcellus in an attitude of defence, although but imperfectly, since the front segments can be still more withdrawn.

These facts and considerations do not, however, amount to scientific demonstration, and I therefore made a series of experiments, in order to determine whether these caterpillars did actually frighten small birds. The first experiment proved but little satisfactory. A jay, which had been domesticated for years, to which I threw a caterpillar of Chærocampa Elpenor, did not give the insect any time for manœuvring, but killed it immediately by a strong blow with its bill. This bird had been tame for years, and was in the habit of pecking at everything thrown to him. Perhaps a wild jay (Garrulus Glandarius) would have treated the insect differently, but it is hardly possible that such a large and courageous bird would have much respect for our native caterpillars. I now turned to wild birds. A large brown Elpenor larva was placed in the food-trough of an open fowl-house from which the fowls had been removed. A flock of sparrows and chaffinches (Fringilla Domestica and Cœlebs) soon flew down from the neighbouring trees, and alighted near the trough to pick up stray food in their usual manner. One bird soon flew on to the edge of the trough, and was just about to hop into it when it caught sight of the caterpillar, and stood jerking its head from side to side, but did not venture to enter. Another bird soon came, and behaved in a precisely similar manner; then a third, and a fourth; others settled on the perch over the trough, and a flock of ten or twelve were finally perched around. They all stretched their heads and looked into the trough, but none flew into it.

I now made the reverse experiment, by removing the caterpillar and allowing the birds again to assemble, when they hopped briskly into the trough.

I often repeated this experiment, and always with the same result. Once it could be plainly seen that it was really fear and not mere curiosity that the birds showed towards the caterpillar. The latter was outside the trough amongst scattered grains of food, so that from one side it was concealed by the trough. A sparrow flew down obliquely from above, so that at first it could not see the caterpillar, close to which it alighted. The instant it caught sight of the insect, however, it turned in evident fright and flew away.

Of course these experiments do not prove that the larger insectivorous birds are also afraid of these caterpillars. Although I have not been able to experiment with such birds, I can certainly prove that even fowls have a strong dislike to these insects. I frequently placed a large Elpenor larva in the poultry yard, where it was soon discovered, and a fowl would run hastily towards it, but would draw back its head just when about to give a blow with the bill, as soon as it saw the caterpillar closely. The bird would now run round the larva irresolutely in a circle – the insect in the meantime assuming its terrifying attitude – and stretching out its head would make ten or twenty attempts to deal a blow with its bill, drawing back again each time. All the cocks and hens acted in a similar manner, and it was often five or ten minutes before one particularly courageous bird would give the first peck, which would soon be followed by a second and third, till the caterpillar, appearing palatable, would finally be swallowed.

These experiments were always made in the presence of several persons, in order to guard myself against too subjective an interpretation of the phenomena; but they all invariably considered the conduct of the birds to be as I have here represented it.146

If it be admitted that the ocelli of caterpillars are thus means of exciting terror, the difficulty of their occurring in protectively coloured species at once vanishes. They do not diminish the advantage of the adaptive colouring, because they do not make the caterpillars conspicuous, or at least any more easily visible at a distance, excepting when the insects have assumed their attitude of alarm. But these markings are of use when, in spite of protective colouring, the larva is attacked by an enemy. The eye-spots accordingly serve the caterpillar as a second means of defence, which is resorted to when the protective colouring has failed.

By this it must not be understood that the ocelli of the Chærocampa larvæ invariably possess only this, and no other significance for the life of the insect. Every pattern can be conceived to render its possessor in the highest degree conspicuous by strongly contrasted and brilliant colouring, so that it might be anticipated that perfect eye-spots in certain unpalatable species would lose their original meaning, and instead of serving for terrifying become mere signals of distastefulness. This is perhaps the case with Chærocampa Tersa (Fig. 35), the numerous eye-spots of which make the insect easily visible. Without experimenting on this point, however, no certain conclusion can be ventured upon, and it may be equally possible that in this case the variegated ocelli with bright red nuclei resemble the blossoms of the food-plant (Spermacoce Hyssopifolia).147 I here mention this possibility only in order to show how an inherited form of marking, even when as well-defined and complicated as in the present case, may, under certain circumstances, be turned in quite another direction by natural selection, for the benefit of its possessor. Just in the same manner one and the same organ, such, for instance, as the limb of a crustacean, may, in the course of phyletic development, perform very different functions – first serving for locomotion, then for respiration, then for reproduction or oviposition, and finally for the acquisition of food.

На страницу:
18 из 25