
Полная версия
Космология вечером у камина
II. Радиус-вектор каждой планеты заметает равные площади за равные промежутки времени.
Любопытно, что второй закон был сформулирован Кеплером даже раньше первого. Возможно, что именно это позволило ему «угадать» первый закон. Думаю, необходимо отметить следующее важное обстоятельство. Несмотря на то, что формулировка первых двух законов указывает, как бы, на гелиоцентрическую картину мира, они, на самом деле, нисколько не противоречат геоцентрической картине, если вот это самое «как бы» вставить прямо в первый закон: «Планеты как бы двигаются по эллипсам…». Получается, что гелиоцентрическая теория может рассматриваться не более как красивый математический прием, позволяющий значительно упростить вычисления, а вот «истина» – за Птолемеем, на чем и настаивала церковь. При любой из этих формулировок справедлив третий закон.
III. Квадраты периодов обращения планет пропорциональны кубам больших полуосей эллипсов их орбит.
В отличие от первых двух, третий закон сравнивает разные планеты и находит в их движении общие черты, что говорит об общей причине сходства траекторий. Да и относительные расстояния планет от Солнца можно найти, лишь приняв гелиоцентрическую систему. Более подробный анализ мы отложим «на потом», а пока отметим лишь, что законы эти, во-первых, эмпирические и, во-вторых, кинематические, т.е., без указания причин такого, а не другого, движения. Именно поэтому они и не позволяют сделать выбор между Птолемеем и Коперником.
Иоганн Кеплер был, несомненно, приверженцем теории Николая Коперника. Но при этом вовсе не «слепым» последователем. Он сделал радикальный шаг вперед – отказался от сфер и окружностей. Эллипс – всего-навсего небольшое обобщение окружности, но каков эффект! Уже нет нужды требовать «естественной» равномерности, т.е., постоянной по величине скорости – гораздо естественнее неравномерность, но при этом есть определенная закономерность, выраженная вторым законом. Математически не менее изящная, чем в оригинальной модели Коперника. Все резко упростилось. Вдобавок, еще и третий закон, намекающий на общую причину движения планет. Очень научно, в духе проповедуемого Галилео Галилеем научного метода. Потому-то и кажется странным, что именно Галилей не принял теорию Кеплера. Возможно, из-за явного отказа от окружностей и равномерности. Для Галилея равномерность движения было основным в его формулировке закона инерции, причем, похоже, под таковым он понимал не только равномерное прямолинейное движение (как учили в школе), но и равномерное движение по окружности.
Галилео Галилей умер 8 января 1642 года. А 25 декабря 1642 года родился Исаак Ньютон (Isaac Newton 1642—1727).
Король умер, да здравствует король!
Ньютон
Общеизвестно, что Исаак Ньютон был гением. Сам он говорил о себе: если я и видел дальше других, то только потому, что стоял на плечах гигантов. Ньютон имел в виду Галилео Галилея, Рене Декарта и Иоганна Кеплера. Мы уже говорили, что Галилей справедливо считается родоначальником теоретической физики. А вот Ньютон – первый физик-теоретик. А чем занимается теоретическая физика – описанием Природы (= Вселенной). Восхищенный Кеплером, молодой Исаак Ньютон хочет найти природу движения планет по эллипсам. Восхищенный Галилеем и Декартом, он хочет создать «теорию всего», но не на словах (философия), а дать строгое, основанное на аксиомах, как геометрия в «Началах» Евклида, математическое описание, позволяющее производить конкретные вычисления. Недаром же его основной труд, увидевший свет в 1687 году, назывался «Математические начала натуральной философии» (т.е., физики).
Здесь уместно вспомнить еще одного гиганта, труды которого оказали огромное влияние на молодого Ньютона. Это его современник Христиан Гюйгенс (Christian Huygens 1629—1695).
Именно он разработал кинематику криволинейного движения и вывел формулу для центростремительного ускорения, ныне знакомую каждому старшекласснику. По сути, Гюйгенс доказал, опираясь на открытый Галилеем принцип суперпозиции движений (то бишь, векторного сложения скоростей), что равномерное движение по окружности является частным случаем общего криволинейного движения (а не чем-то особенным, в противовес Галилею).

Исаак Ньютон в 1689 г. (изображение из Википедии, автор портрета – Г. Кнеллер)
В результате, Ньютон так сформулировал свой первый постулат (в русском переводе): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние». Как видим, к формулировке Галилея добавлено только одно слово – «прямолинейное» – но оно-то и расставляет все по местам. Постулаты, как и приказы, не обсуждаются. И, если слово «тело» заменить на «материальная точка», а слово «сила» – на «воздействие со стороны других материальных точек», то звучит вполне современно. А как узнать, что силы не действуют? А очень просто, ответил бы Ньютон. Оглянись вокруг себя: не видишь – значит, нет. Системы отсчета (часы + линейки), связанные с таким телом, мы сейчас называем инерциальными.
Второй постулат (опять же, в формулировке Ньютона и в русском переводе) гласит: «Изменение количества движения пропорционально прилагаемой внешней движущей силе и происходит по направлению прямой, по которой эта сила действует». Количество движения – это то, что мы сейчас называем импульсом (материальной точки), он равен произведению массы тела на вектор скорости. А масса- тот самый коэффициент пропорциональности или, иначе, инертная масса, мера инерции. Что важно – это то, что, в силу принципа относительности (первого постулата), масса не зависит от скорости, и для каждого данного тела (материальной точки) величина постоянная. В таком виде этот второй закон справедлив только в инерциальных системах отсчета. Что еще он говорит о природе внешних сил, помимо того, что они описывают взаимодействие с другими телами? А то, что сила есть вектор, и взаимодействия с разными телами просто складываются. Отметим, кстати, что расхожие выражения «сила воли» и «сила мысли» не относятся к физическим силам. Для этих понятий нет соответствующих математических выражений, и они не входят в уравнения Ньютона наравне с обычными физическими силами. Хотя «сила воли» и «сила мысли» могут иметь направления, они могут быть направлены на тот или иной объект или субъект, повторим, что это не физические силы. Понятно, что второй закон (= постулат) очень конструктивен: проводя эксперименты с одним и тем же телом, можем сравнивать различные силы с неким эталоном, а производя эксперименты с одной и той же силой, но с различными телами, можем сравнивать их массы с неким эталоном.
Наконец, третий постулат дает нам очень важную информацию о силах. Вот формулировка Ньютона: «Действию есть всегда равное и противоположное противодействие, иначе – взаимодействия двух тел друг на друга между собой равны и направлены в противоположнее стороны». Этот третий постулат дорогого стоит. Он ведь означает, что сумма импульсов всех тел изолированной системы сохраняется, т.е., не зависит от времени. С одной оговоркой – импульсы эти измеряются в некоторой инерциальной системе отсчета (второй закон Ньютона). В частности, мы всегда можем выбрать такую инерциальную систему отсчета, в которой полный импульс равен нулю, т.е., изолированная система, как целое, покоится. Мы называем ее система центра масс. Из равноправия всех таких систем следует незамедлительно, что пространство однородно и изотропно (вот так!). И Исаак Ньютон постулирует эти свойства, предлагая принять существование абсолютного пустого, однородного и изотропного пространства. Добавим к этому – в котором действует геометрия Евклида. А какая же еще? Другие варианты тогда и представить было невозможно. Но для измерений длин, скоростей и ускорений необходимо сравнивать и промежутки времени в разных инерциальных системах отсчета. Как быть c ним? Деваться некуда, и Исаак Ньютон постулирует существование абсолютного однородного времени, текущего совершенно одинаково во всех инерциальных (и не только инерциальных) системах отсчета.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.