bannerbanner
Физика ускорителей заряженных частиц. Учебное пособие
Физика ускорителей заряженных частиц. Учебное пособие

Полная версия

Физика ускорителей заряженных частиц. Учебное пособие

Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
2 из 3

Уменьшение размеров пучка достигалась при этом за счёт серьёзного усложнения магнитной системы, да и сам принцип нельзя считать очень наглядным с физической точки зрения. Последнее обстоятельство оказалось совсем немаловажным: ещё за два года до этого сильная фокусировка была предложена тогда неизвестным греческим инженером Н. Кристофилосом, но его работа в рукописи не привлекла никакого внимание и осталась неопубликованной. Тем не менее работоспособность и реализуемость принципа сильной фокусировки никаких сомнений не вызывали, поскольку базировался он хорошо известных положениях теории устойчивости дифференциальных уравнений с периодическими коэффициентами.

Правда, первоначальные оценки параметров сильнофокусирующего ускорителя оказались слишком оптимистическими, что показал более тщательный анализ требуемой точности изготовления и установки магнита. Тем не менее даже в более скромном варианте принцип сильной фокусировки обещал экономию веса и мощности питания магнита больше, чем на порядок.

Экспериментально принцип сильной фокусировки был быстро проверен Р. Вильсоном с сотрудничеством на реконструированном электронном синхротроне Корнеллького университета. Однако преимуществ его могли полностью сказаться лишь в больших машинах. К этому новому поколению относились три проекта синхротронов: на 28 ГэВ в ЦЕРНе, Европейском центре по физике высоких энергий в Женеве, на 30 ГэВ в Институте теоретической и экспериментальной физики (ИТЭФ) в Москве. Последняя машина рассматривалась как промежуточный этап для создания ускорителя на энергии порядка 50—60 ГэВ.

Электронным сильнофокусирующим машинам сначала уделялось относительно меньше внимания из-за больших трудностей, связанных с компенсацией радиационных потерь при высоких энергиях. Однако некоторые преимущества электронных синхротронов, из которых не последнюю роль играет простота интерпретации экспериментов по электромагнитному взаимодействию элементарных частиц, привели к появлению ряда проектов на энергию в несколько ГэВ, первым из которых оказался новых синхротрон Корнелльского университета, построенных под руководством Р. Вильсона. Впоследствии энергия на этой установке превысила 10 ГэВ. Надо отметить, что специфика, создаваемая наличием синхротронного излучения, отнюдь не сводится только к компенсации потерь энергии, и разработка электронных ускорителей на большую энергию потребовала последовательного учёта многих радиационных эффектов.

Принцип сильной фокусировки был быстро обобщён и на другие типы ускорителей. В частности, применение его к циклотрону возродило на новой основе предложение Л. Томаса, сделанное ещё в 1938 году, и привело к появлению проектов машин нового класса – изохронных циклотронов, обладающих потенциально очень высокой средней интенсивностью пучка. Первые машины такого типа на небольшую энергию были построены в конце 50-х годов в США, Голландии и в СССР в ОИЯИ под руководством В. П. Джелепова и В. П. Дмитриевского. Ещё раньше, в 1953 году А. А. Коломенским, В. А. Путёховым и М. С. Рабиновичем был предложен вариант сильнофокусирующего кольцевого ускорителя с постоянным полем, названного кольцевым фазотроном.

В истории ускорителей во многом примечательным оказался 1956 год – дата первой международной конференции по ускорителям, состоявшейся в ЦЕРНе.

Во-первых, она ознаменовала собой начало более широкого обмена информацией и идеями, личного контакта между специалистами различных стран.

Во-вторых, на ней впервые были доложены принципиально новые идеи, некоторые из них уже осуществлены, а другие создают далёкую перспективу на будущее.

К числу таких идей следует отнести предложение Д. Керста об осуществлении ядерных реакций н встречных пучках ускоренных частиц, что резко увеличивает эффективную энергию их взаимодействия. Собственно говоря, сам этот чисто кинематический эффект был известен ранее. Заслуга Д. Керста состояла в доказательстве того, что вполне реально накопить такой ток релятивистских пучков, циркулирующих в постоянном магнитном поле, при котором скорость отсчёта полезных событий станет вполне доступной для наблюдения, несмотря на крайнюю разрежённость той «мишени», которую представляет собой встречный пучок. Идея была немедленно принята к практической реализации Дж. О’Нейлом, использовавшим пучок от ускорителя Станфордского университета, и Г. И. Будкером, возглавившим новый Институт ядерной физики (ИЯФ) в Новосибирске.

На первых этапах речь шла о встречных пучках электронов, что позволило провести только один тип эксперимента – ее-рассеяние. Следующий решающий шаг состоял в осуществлении электро-позитронных частиц позволили резко расширить класс экспериментов, включить в них образование вторичных частиц, в том числе короткоживущих ρ- и φ-мезонов и подробнее войти в процесс изучения антиматерии в экспериментальном смысле.

Ещё более неожиданной была группа работ советских авторов, относящихся к так называемым коллективным методам ускорения. Суть их заключается в том, что для управления движением частиц и их ускорении используются поля пространственного заряда и тока других, медленных частиц, что позволяет снять некоторые принципиальные ограничения, свойственные обычным ускорителям. Так, Я. Б. Фейнбергом было предложено использовать для линейного ускорения ионов медленные волны в плазме, максимальная напряжённость поля в которых намного превышает напряжённость в обычных высокочастотных системах или ВЧ системах. Г. И. Будкер опубликовал свои работы по так называемому стабилизированному пучку – двухкомпонентной электрон-ионной системе с большим током, в которой развиваются очень большие собственные магнитные поля.

Особо следует отметить публикацию серии работ В. И. Векслера в сотрудничестве, начатом в начале 50-х годов и посвящённых ускорению ионов потоками и сгустками электронов, имеющих сравнительно небольшую энергию. Хотя во всех этих случаях речь шла только о теоретических работах, появление нового круга идей вызвало огромный интерес и инициировало начало экспериментов во многих лабораториях. К сожалению, экспериментальные трудности оказались слишком велики, и методы коллективного ускорения до сих пор можно отнести, скорее, к перспективным, чем к освоенным.

В 1959 году под руководством Дж. Адамса был выпущен протонный синхротрон ЦЕРНа на 28 ГэВ – первая большая машина нового поколения, использующая сильную фокусировку. Сразу же за этим последовал запуск Брукхейвенского ускорителя на 30 ГэВ под руководством Г. Грина, а затем появилась серия электронных синхротронов на энергию в несколько ГэВ – уже упоминавшийся Корнелльский синхротрон, Кембриджский синхротрон в США, установка DESY в Гамбурге (ФРГ), английский синхротрон NINA. В Советском Союзе в 1967 году под руководством А. И. Алиханяна был запущен синхротрон Ереванского физического института на 6 ГэВ. На этих машинах был получен важный экспериментальный материал, относящийся к физике тяжёлых мезонов, гиперонов, нейтрино и т. д.

В эти годы был сделан качественно новый шаг и в технике линейного ускорения: в 1967 году был торжественно открыт гигантский линейный ускоритель электронов длиной около 3 км в Станфордском ускорительном центре, руководимом В. Пановским. По достигнутой энергии (23 ГэВ) этот ускоритель на момент 80-х годов не имел даже близких конкурентов.

В 60-х годах произошло также некоторое изменение в подходе к основным параметрам ускорителей. Ранее считалось более или менее естественны, что с увеличением энергии у данного класса ускорителей, как правило, падает интенсивность пучка, хотя бы из-за уменьшающейся частоты повторения циклов, относительно меньшей апертуры камеры и т. д.

Это было отмечено на одной из конференций, где рядом с уже упоминавшийся экспоненциальной кривой роста энергии была приведен примерно линейно спадающая интенсивность вводимых в строй машин с рекордной энергией. Линейная экстраполяция приводила к довольно мрачному выводу о том, что в середине 70-х годов может появиться «идеальный» ускоритель с большой энергией и нулевой интенсивностью.

Подобные опасения появлялись после некоторых выступлений, на этой конференции, но их наличие и следствие подводило к образованию нового этапа развития ускорительной техники, вплоть до сегодняшних дней.

Контрольные вопросы

1. Переход на какой порядок энергий пучков частиц в 60-х годах прошлого столетия стало одним из прорывных?

2. Каковы параметры синхрофазотрона Дубны, запущенный в 1956 году на энергию 10 ГэВ?

3. В каком году прошла первая международная конференция по ускорительной технике в ЦЕРНе?

4. Когда и где был создан первый синхротрон?

5. Кто руководил созданием синхротрона на энергию 280 МэВ в Москве?

6. В каком году был создан первый фазотрон в Дубне?

7. Чему была равна энергия первого синхроциклотрона?

8. Какое второе наименование имеет фазотрон?

9. Как назывался первый крупный протонный синхротрон на энергию 3 ГэВ, созданный в 1952 году?

10. Где был создан первый космотрон 1952 года?

Лекция 3

Тема: Физика ускорителей до сегодняшнего дня

Опасения, о которых говорилось в прошлый раз, конечно, не оправдались; больше того, проектная интенсивность стала быстро повышаться, а уже работающие машины подверглись реконструкции для увеличения числа ускоренных частиц. Причина этого проста – дополнительные средства, затраченные на повышение интенсивности уникальных дорогостоящих установок, стали с лихвой окупаться повышением эффективности их использования, сокращением времени эксперимента и увеличением его прецизионной, возможностью проведения качественно новых экспериментов с относительно малым числом полезных событий и т. д. Одновременно возросло также внимание к качеству ускоренных пучков – их энергетическому и угловому разбросу, поляризации, сепарации вторичных частиц и т. д. Первостепенное значение приобрели также вопросы разводки пучков с нескольких мишеней и одновременная постановка на пучке нескольких экспериментальных работ.

С точки зрения физики ускорения задач повышения интенсивности означала необходимость учёта и использования этого пучка, которые оказались весьма многообразными. В частности, было обнаружено и исследовано много эффектов неустойчивости когерентных колебаний частиц пучка, сближающих его поведение с поведением плазмы во внешних полях и ограничивающих допустимое число частиц в ускорителях.

Особенно серьёзными эти явления оказались в накопительных установках, предназначенных для экспериментов со встречными пучками. Важную и пионерскую роль здесь сыграли работы Института ядерной физики в Новосибирске, который стал признанным центром в этом направлении. За работы по встречным пучкам и, в частности, за постановку экспериментов по электрон-позитронным соударениям при энергии порядка 600 МэВ Г. И. Будкер, А Н. Скринский, А. А. Наумов, В. А. Сидоров, В. С. Панасюк были удостоены различных премий. Позднее во Франции, Италии, США и Германии появились электрон-позитронные кольца на большую энергию. Крупнейшими из них являются установки PEP на 18 ГэВ при Станфордском линейном ускорителе и PETRA при ускорителе DESY, рассчитанная на энергию до 19 ГэВ в каждом пучке.

Труднее развивались работы по встречным пучкам тяжёлых частиц, поскольку для достижения заметного эффекта в этом методе требуются существенно релятивистские энергии, а даже для протонов это приводит к очень большим размерам накопителя. Только в 1971 году кольца в ЦЕРНе на энергию 25 ГэВ – единственная в мире на момент 80-х годов, где позже был создан БАК.


Большой Адронный Коллайдер


На начальном этапе развития установок со встречными пучками высказывалось немало разноречивых мнений об их конкурентоспособности с обычными ускорителями с неподвижной мишенью. Острота этих способов постепенно сгладилась, и сейчас общепринято, что эти два типа ускорительных установок не исключают, а взаимно дополняют друг друга. Во всяком случае эксперименты на встречных пучках не только не остановили, но даже стимулировали дальнейшее развитие традиционных ускорителей, о чём свидетельствую в дальнейшем эффективно разработанные и созданные модели подобных ускорителей.

Крупнейший шаг в этом направлении был сделан в 1967 году, когда к 50-летнему юбилею СССР был введён в строй протонный синхротрон на 76 ГэВ вблизи города Серпухова в Институте физики высоких энергий (ИФВЭ). Инжектором для него служил также крупнейший в то время протонный линейный ускоритель на энергию 100 МэВ. Кольцевая вакуумная камера ускорителя радиусом около 200 метров имеет сечение 195*115 мм, а полный вес магнита составляет 20 000 тонн, причём блоки магнита установлены с точностью до 100 мкм.


Ускоритель в Серпухове


В создании машины, сооружённой за шесть лет, принимали участие многочисленные институты и специализированные организации Советского Союза. Ускоритель бесперебойно работает вот уже свыше 10-ти лет, подвергаясь почти непрерывным усовершенствованиям и модификациям как с точки зрения самой машины, так и в смысле модернизации экспериментального оборудования, по объёму и стоимости вполне сравнимого с самим ускорителем. В экспериментальных работах в Серпухове активно участвуют учёные разных стран.

Несколько нарушая хронологию, что неизбежно при описании работ, которые проводятся в течение нескольких лет, важно остановиться ещё на некоторых направлениях ускорительной техники 60-70-х годов. Выше уже упоминалось об изохронных циклотронах – машинах, способных довести энергию протонов до значений порядка 1 ГэВ и одновременно обладающих основным преимуществом циклотрона – высокой средней интенсивностью. Этими же возможностями обладают также в принципе и линейные ускорители протонов.

Оба типа машин можно использовать в качестве генераторов мезонов, которые непосредственно не могут быть ускорены из-за малого времени жизни. В связи с этим направлением появился даже специальный термин – «мезонные фабрики». Несмотря на трудности, связанные со сложностью магнитной системы изохронного циклотрона и необходимостью разработки новых ускоряющих систем для линейного ускорения протонов до релятивистских энергий, эта задача была успешно решена. Также успешно работал швейцарский циклотрон SIN, канадская машина TRIUMF и изохронный циклотрон в Киеве. В 1972 году под руководством Л. Розена был запущен, хотя и не на полную расчётную интенсивность (1 мА), линейный ускоритель протонов на 800 МэВ в Лос-Аламосской Национальной лаборатории в США.

В СССР в 80-х сооружался линейный ускоритель протонов на большую энергию при участии Института ядерных исследований АН СССР, Московского радиотехнического института и НИИ электрофизической аппаратура имени Д. В. Ефремова. Не сказали своё последнее слово и циклотроны. Помимо традиционного использования для ядерной физики средних энергий, перед ними открылась широкая область ускорения тяжёлых ионов с достижением энергий порядка нескольких МэВ на каждый нуклон, сравнимой со средней энергией связи нуклона в ядре. Передовые позиции в этом направлении принадлежат лаборатории Г. Н. Флерова в Дубне, успешно синтезировавшей с помощью такой техники ряд трансурановых элементов.

В 80-х годах в этой лаборатории был запущен циклотрон с диаметром полюсных наконечников 4 метра изохронного типа, в котором ионы ускоряются в широком диапазоне массовых чисел (свыше 140) до энергии порядка 10 МэВ/нуклон. Вступают в строй и новые специализированные линейные ускорители тяжёлых ионов (Унилак, Германия).

В 1967 году на очередной международной конференции по ускорителям было доложено о советских работах по коллективным методам ускорения, проводившихся в Дубне под руководством В. И. Векслера, а после его смерти в 1967 году – В. П. Саранцева. На этот раз речь шла не об общей идее, а о конкретизации одного из методов В. И. Векслера – так называемого ускорения электронных колец, в которые захватываются ускоряемые ионы. Будучи ускоренными до сравнительно небольшой энергии, электронные сгустки должны увлекать с собой протоны, получающие при той же скорости гораздо большую энергию. Это сообщение вновь активизировало экспериментальные работы по коллективным методам.

В США, например, под руководством Э. Сесслера, Д. Кифа и других начал интенсивно разрабатываться проект под символическим названием ERA. Аналогичные работы были несколько позднее развёрнуты в Германии. Эти исследования много дали для понимания физики коллективного ускорения и связанных с ним трудностей, но к заметному успеху все же не привели. Наибольших успехов пока добились В. П. Саранцев и его сотрудники, ими были получены эффективные ускоряющие поля порядка 10 МВ/м, используемые для ускорения тяжёлых ионов.

На новом уровне возродились и некоторые старые идеи, приведшие к появлению новых типов ускорителей. Так, для создания электронных сгустков с большим числом частиц, требующихся для коллективных методов ускорения, наиболее подходящим инструментов оказался линейный индукционный ускоритель, предложенный А. Буверсом ещё в 1929 году. В современном техническом исполнении эта машина сейчас довольно широко используется для получения сильноточных (102—103 А) импульсов электронов с небольшой энергией порядка нескольких МэВ. Весьма удобной и надёжной машиной на малые энергии оказался также микротрон, для модернизации которого много было сделано лабораторией С. П. Капицы в Институте физических проблем.

Некоторые прикладные задачи, требующие получения очень мощных импульсов коротковолнового рентгеновского излучения, привели в середине 60-х годов к появлению сверх сильноточных электронных машин с токами до МА в импульсе при энергии от 1 до нескольких МэВ. Первые работы в этом направлении были, по-видимому, проведены Дж. Мартином в Олдермастонской лаборатории в Англии. Впоследствии эта техника была распространена и на ионные пучки. Являясь сейчас одним из наиболее мощных энергоносителей, которые осуществимы в лабораторных условиях, сильноточные электронные и ионные пучки используются в некоторых исследованиях, включая проблему управляемого термоядерного синтеза.

Однако в развитии ускорителей доминантными всегда оставались требования физики высоких энергий, под влиянием которых были осуществлены два протонных машин в диапазоне 0,1—1 ТэВ. Первым из них был запущенный в 1972 году синхротрон в Национальной лаборатории имени Ферми в Батейвии, недалеко от Чикаго, руководимой тогда Р. Вильсоном. Радиус орбиты этой машины, постепенно наращивавший свою энергию от 200 до 500 ГэВ, составляет 1 километр. Вслед за ним в конце 1976 года вступил в строй аналогичный ускоритель в ЦЕРНе на энергию 400 ГэВ. Этой работой руководил Дж. Адамс.

Также отмечая и крупнейший БАК, на энергию 6,3 ТэВ, созданный уже в 2008 году в том же ЦЕРН. При этом являясь ускорителем на встречных пучках, с радиусом 26 656 м, на протон-протонные реакции.

Необходимо обратить внимание на некоторые новые важные тенденции в современной ускорительной технике. Прежде всего, работа современного крупного ускорителя невозможна без высокой степени его автоматизации, под которой следует понимать не только автоматизацию проведения эксперимента и обработки накапливаемого «сырого» материала очень большого объёма, но и автоматическое управление режимом самого ускорителя. Мощным средством в этом направлении является непрерывное получение информации о динамике циркулирующего пучка, оперативная её переработка с помощью быстродействующей ЭВМ и автоматическое введение корректирующего воздействия на те или иные подсистемы установки. Разработка систем автоматизации стала сейчас самостоятельной отраслью, не менее важной, чем, скажем, конструирование магнита или высокочастотной системы.

Вторым необходимым требованием к современному большому ускорителю является его универсальность, под которой понимается возможность использования не только первичного пучка, но и разнообразных вторичных частиц. Особенно широкие возможности предоставляет здесь метод накопления вторичных частиц и установки со встречными пучками, комбинируемые с основным ускорителем. Фактически большая машина является сейчас центром целого ускорительного комплекса, состоящего из нескольких ускорительных и накопительных установок с возможностью постановки самых разнообразных экспериментов, идущих одновременно.

Наконец, надо отметить, что создание больших ускорителей сейчас оказывается под силу лишь крупным государствам, как было отмечено, развитым в промышленном отношении, но и для них сопутствующие материальные и трудовые затраты весьма ощутимы. Поэтому для уникальных машин, исчисляемых единицами, всё больше значение приобретают вопросы интернациональной кооперации и привлечение в процессы реализации проектов международные собрания.

Первыми примерами такого рода стал ЦЕРН – организация двенадцати стран Западной Европы и ОИЯИ в Дубне. В подготовке и проведении экспериментов на ускорителе ИФВЭ в Серпухове активное участие принимают учёные во Франции, ЦЕРНа и США. Примером активного сотрудничества учёных разных политических систем может служить участие советских специалистов в экспериментах на ускорителях ЦЕРН и в Батейвии. Можно надеяться, что в дальнейшем эти традиции будут всё больше укрепляться и развиваться.

Ближайшие перспективы развития ускорителей пока не предвещают качественного изменения основных тенденций. Серьёзные надежды возлагаются на использование сверхпроводящих магнитных систем с большим магнитным полем, позволяющим уменьшить радиус кольца и существенно сократить потребляемую мощность. Сейчас, например, интенсивно идёт сооружение сверхпроводящего магнита в Батейвии, который должен быть расположен в том же туннеле и при поле порядка 4 Тл позволит удвоить максимальную энергию, доведя её до 1 ТэВ.

Особенно перспективно использование сверхпроводящих систем в накопительных системах, предусматриваемое, например, для протонного накопителя ISABELLE с энергией по 400 ГэВ в каждом пучке, инжектором для которого должен служить Брукхейвенский синхротрон. Имеется также несколько интересных проектов протонных и протон-антипротонных накопительных систем в Новосибирске и ЦЕРНе. Существенно подняты энергии для электрон-позитронных пучков с вводом в строй накопителей RETRA в Гамбурге (до 19 ГэВ) и PEP в Станфордском центре (18—24 ГэВ).

Крупнейшим из осуществляемых проектов, отражающим развитие ускорительной физики на ближайшее десятилетие, является советский проект ускорительно-накопительного комплекса (УНК) в Серпухове. В основе его лежит протонный сверхпроводящий синхротрон на 3 ТэВ (радиус около 3 км). В том же туннеле должен быть размещён предварительный ускоритель – бустер с электромагнитом обычного типа, инжектором для которого будет существующих в Серпуховский синхротрон. Предусматривается возможность создания без специального накопительного кольца встречных pp-пучков с энергией 1,5 ТэВ в системе центра инерции. Кроме того, бустер можно использовать для накопления электронов и ep-столкновений. Изучается также возможность осуществления в УНК протон-антипротонных соударений, а также сооружения дополнительного кольца с постоянным полем, равным 5 Тл, что позволит получить встречные протонные пучки с энергией 2—3 ТэВ.

Кажущийся естественным вопрос, какая же энергия нужна физикам-экспериментаторам, вообще лишён физического смысла. Ответ на него всегда один – нужна энергия в 5 раз больше, чем уже достигнутая. Причина этого проста: эксперимент на ново качественном уровне (в данном случае энергии) всегда ставит больше вопросов, чем даёт ответов. Поэтому сомневаться в дальнейшем росте энергии ускоренных частиц нет никаких оснований.

Данный короткий обзор призван дать лишь представление об общей логике развития ускорителей и ни в коей мере не претендует на полноту. Мы не могли даже перечислить все установки с рекордными параметрами или с интересными физическими и техническими особенностями.

И делая некоторое примечание, важно указать, что в некоторых случаях указываемые данные ссылались на момент 80-х годов и по прошествии не малого количества времени важно отметить возможность создания нового типа ускорителей – системы из циклотрона и линейного ускорителя – ускорителя типа ЛЦУ, высокоточного типа, с большими токами, в котором пучок вылетающий из самого циклотрона контролировался бы добавлением необходимой порции энергий уже на линейном ускорителе, либо наоборот.

Делая заключение к данному обзору, укажем, что важно изучать историю развития науки, в которой осуществляется работа, ибо всегда можно найти аспекты, способные дать своего рода наводку и помощь. В дальнейшем уже начнётся разбор самой физики ускорителей, с подробным их рассмотрением.

Контрольные вопросы

1. Укажите параметры ускорителя, созданного в 1967 году в Серпухове на энергию 76 ГэВ.

На страницу:
2 из 3