
Полная версия
Invention: The Master-key to Progress
Shortly afterward Alexander reached the town of Gaza, the great stronghold of the Philistines. It stood on high ground, and was more than two miles from the sea. Alexander's engineers reported to him that, as the fleet could not assist them, and as the walls were themselves very high and stood on a high hill, the walls could never be stormed. Things looked serious. They were serious; and failure would then have come to any man, except a man like Alexander. He cut the Gordian knot by ordering that ramparts be thrown up as high as the top of the walls, and war engines placed on the ramparts. This was done, and the city was taken.
Alexander's campaigns in Egypt, and afterward in western Asia, were characterized by the same quickness and daring, both in conception and in execution, that had marked his opening campaigns in Greece. Later, when advancing toward Persia, he encountered a tribe of hillsmen in the Uxian Pass, who, like the Thessalians and the Thracians, thought they had blocked his passage by opposing him in so narrow a defile. Alexander literally "circumvented" them by making a night march over a difficult mountain pass, and astonishing them by an attack on their rear the following morning. Shortly afterward a like situation presented itself, when an army opposed him in a narrow defile called the Persian Gates, that was fortified with a wall. Alexander soon realized that the position of his enemy was impregnable. He learned, however, that there was a path that led around the pass, though it was exceedingly dangerous, particularly to men in armor and to horses, and especially at that time, when snow and ice were on the ground. He again utilized his former invention (circumvention) and with his former success; though the conditions under which it was accomplished were much more difficult.
The four examples just given of literally circumventing an uninventive enemy illustrate in the simplest form the influence of invention on military history.
After it became clear to Alexander that his invasion of Asia would be successful from a military point of view, his active imagination presented to his mind a picture of a grand and noble empire, embracing the whole world, but dominated and inspired by the spirit of the civilization of Greece. To develop this conception into an actual reality, became at once the object of his efforts. To develop it, he decided to adopt in some measure the characteristics and dress of the people in whatever province he might be, and to take such steps in organizing provinces, founding cities and establishing systems, as to weld all into one empire, under himself, as ruler. One can hardly credit the authoritative account he reads of Alexander's bewildering success. He seems not only to have won battles, and built cities, and organized provinces, but actually to have super-posed Greek civilization on Persian civilization!
In one of his most important later battles, Alexander again utilized his inventiveness. If he had not done so, he would assuredly have lost the battle. It was against King Porus in northwestern India. Alexander found the forces of Porus encamped on the opposite side of the Hydaspes River, with the evident intention of preventing him from crossing. As the army of Porus in men alone was evidently equal to his own, and as it was reinforced with a multitude of elephants, Alexander was apparently confronted with a problem impossible of solution. It would have been impossible to anyone but a man like Alexander. He, however, by means of various feints and ingenious stratagems, managed to get across at night about sixteen miles up the river, using boats that he had constructed, and floats of skin stuffed with straw. Porus took up a position on the opposite shore and made ready to receive attack, his front preceded by war chariots and elephants. Alexander had neither; but he did have brains and originality. So he simply held the enemy with his infantry, and then made a determined attack with cavalry and archers on the enemy's left flank, and especially on the elephants. The elephants soon got beyond control; and the rest of the battle was a fight between a highly trained Macedonian phalanx, assisted by cavalry, and an Oriental mob.
Alexander died in Babylon when not quite thirty-three years old. In actual and immediate achievement he surpassed perhaps every other man who has ever lived. He founded an empire which he himself had conceived and developed, which covered nearly all the then known world, and which, though it was composed mainly of barbarous and semi-barbarous people, was dominated by Greek thought. It is true that the empire fell apart almost immediately after Alexander died. But it did not fall into anarchy, or revert to its previous state: it was divided into four parts, each of which was distinct, self-governing and well organized. The two larger parts, the kingdom of the Seleucidæ, which occupied approximately the territory of Persia, and the kingdom of the Ptolomies, or Egypt, continued as torch-bearers to civilization for many centuries thereafter.
Of the two, the former was the larger and was probably the better, from an administrative point of view; but Egypt represented the finer civilization; for Alexandria, with its library and its wonderful museum, became the seat of learning and the resort of the scholars of the world, and the centre of the Hellenistic civilization that followed that of Greece.
This Hellenistic civilization, it may here be pointed out, was in some respects as fine as that of Greece, and in some respects was finer, because it was more mature. But (perhaps for the reason that it was more mature) it lacked much of the element that was the highest in the Greek, the element that gave Greek civilization greater influence on history than any other civilization ever had – the creative element. The creative period of Greece ceased when her political liberty was lost. Furthermore, the immense amount of wealth that poured into the Grecian cities and the Græco-Oriental world, by reason of the putting into circulation of gold that had been stored away in Oriental palaces, as well as by the commercial exploitation of the riches of the East, brought about a general effeminizing of all classes of society, and the consequent dulling of their minds.
Nevertheless, there was great intellectual activity in the Græco-Oriental world, and a certain measure of invention, though little was of a basic kind. Euclid improved the science of geometry, and put it in virtually the same shape as that in which it has been taught since, even to this day. Aristarchus, the astronomer, announced the doctrine that the earth revolves around the sun and rotates on its own axis; and Hipparchus invented the plan of fixing the positions of places on the earth by their latitudes north and south of the Equator and their longitude east or west of a designated meridian. Hippocrates and Galen conceived and developed the foundations of the science of medicine of the present day. Eratosthenes estimated with extraordinary accuracy the circumference of the earth, and founded the science of geography.
But the greatest of all of the original workers of that time was Archimedes, who lived at Syracuse in Sicily, and was killed by mistake when Syracuse was captured in the year 212 B. C., while engaged in drawing a geometrical figure on the sand. His principal fame is as a mathematician; but as a great inventor of mechanical appliances, he is the first man recognized as such in history. The invention with which his name is most frequently linked is that of the Archimedean screw. This consisted of a tube, wound spirally around an inclined axle, and so disposed that when the lower end of the tube was dipped into water and the axle was rotated water would rise in the tube – as shavings do when a screw is screwed down into wood. It constituted a very convenient pump and was so used. This was, of course, a mechanical invention of the utmost originality and value, and forms one of the clearly defined stepping-stones to civilization.
There seems to be a belief in the minds of some that Archimedes was the inventor of the lever. The lever was, of course, invented long before he lived; but the laws of its operation and the principle that the weight on each side of the fulcrum, multiplied by its distance from the fulcrum, is equal to the weight on the other side, multiplied by its distance (when the lever is in equilibrium), seems to have been established by him.
Many stories are told of his exploits when Syracuse was besieged by the Romans, but they are rather vague. The best known story is that he arranged a great many mirrors in such a way that he concentrated so many rays of sunlight on some Roman ships that they took fire. Whether this is true or not is not definitely known; but many centuries later Buffon, the French scientist, made an arrangement of plane mirrors with which he set fire to wood 200 feet away.
The greatest single exploit of Archimedes was his discovery and demonstration of the hydrostatic principle that the weight of liquid displaced by a body floating in it is equal to that of the body. The story is that the king gave him the apparently impossible task of determining the quantity of gold and the quantity of silver in a certain gold coin, in making which the king suspected the workmen of stealing part of the gold and substituting silver. Pondering this subject later while lying in his bath, Archimedes suddenly realized that his body displaced a bulk of water equal to that part of his body that was immersed, and conceived the consequent law; and the conception was so startling and so vivid that he rushed unclad out into the street crying, "I have found it, I have found it."
The story as a story may not be exactly true; but if Archimedes had realized the full purport and the never-ending result of his conception, he would probably have done something even more eccentric than he did.
*****Archimedes esteemed mechanical inventions as greatly inferior in value to those speculations and demonstrations that convince the mind, and considered that his chief single work was discovering the mathematical relation between a sphere and a cylinder just containing it.
Whether this discovery and the discovery of the hydrostatic principle just mentioned were inventions or not, depends, of course, on the meaning of the word invention. Within the meaning of the word as employed heretofore in this book, both seem to have been inventions. Each made a definite creation and each caused something to exist, the like of which had never existed before. Furthermore, the mental processes followed resemble very closely the conception and formulation of a religion or a theory, the conception and composing of a new piece of music, story or poem, the conception and developing of any new plan or scheme; the conception and embodying in material form of any mechanical device.
It is not asserted, of course, that all inventions are on a dead level of equality, simply because they are inventions. Evidently there are degrees of excellence among inventions as among all other things.
CHAPTER IV
INVENTION IN ROME: ITS RISE AND FALL
We have noted, up to a time approximately that of Archimedes, a continual succession of inventions of many kinds, that formed stepping-stones to civilization so large and plain, that we can see them even from this distance.
We now come to a period lasting more than a thousand years, in the first half of which there was a gradually decreasing lack of inventiveness shown, and in the latter half a cessation almost complete.
The nation that followed Greece as the dominant nation of the world was Rome. She became more truly a dominant nation than Greece ever was; but her civilization was built on that of Greece, and her success even in war and government was due largely to following where Greece had led. That Rome in her early days should have followed the methods of Greece was natural of course; for the two countries were close together, and the methods of Greece had brought success. The early religion of Rome was so like that of Greece that even to this day the conceptions of most of us regarding Zeus and Jupiter, Poseidon and Neptune, Aphrodite and Venus are apt to become confused.
Like the Greeks, the Romans first were gathered in city-states that were governed by kings; and as with the Greeks, more republican forms were adopted later. In one important particular, the Roman practice diverged from the Greek, and that was in incorporating conquered states into the parent state, and granting their inhabitants the privileges of citizenship; instead of keeping them in the condition of mere subject states. The Roman system was somewhat like the system of provinces established by the Assyrians. It forms the basis of the "municipal system" of the free states of the present day, in which local self-government is carried on, under the paramount authority of the state.
It may be pointed out here that the conception of such an idea and its successful development into an effective machine of government by the Romans constituted an invention; though in view of what had been done before by Assyria and Greece, it cannot be called a basic invention.
The early Romans were very different in their mental characteristics from the Greeks; for they were stern, warlike, intensely practical, and possessed of an extraordinary talent for what we now call "team work." As a nation they were not so inventive as the Greeks; but the Roman, Cæsar, was the greatest military inventor who ever lived.
As might be expected, their early endeavors pertained to war, and their first improvements were in warlike things. One improvement that was marked by considerable inventiveness was in changing the phalanx into the legion. The phalanx, the historian Botsford tells us, was "invented by the Spartans, probably in the eighth century B. C.," and consisted of an unbroken line of warriors, several ranks deep. The Thebans improved on this; and from the Theban, Philip developed the Macedonian phalanx with which Alexander fought his way through Asia. The Romans under Servius Tullius developed this into the Roman phalanx, which was different only in detail. The essential characteristic of the phalanx was strength. This was gained by the close support given by each man to his neighbor, the personal strength of each man and the trained co-operation of all. A tremendous blow was given to an enemy's line when a phalanx struck it.
In the early wars among the hills of Italy, the Romans found the phalanx too rigid for such uneven country; and it was in endeavoring to invent a substitute that they finally developed the legion. This machine was much more flexible, the individual soldiers had more room for their movements, and yet the machine seemed to possess the necessary rigidity when the shock of impact came. The heavy infantry was in three lines, and each line was divided into ten companies, or "maniples." The burden of the first attack was borne by the first line. If unsuccessful, the first line withdrew through gaps in the second line, and the second line took up the task; – and then the third, composed of the most seasoned troops. The attack usually began with the hurling of javelins, and was followed at once by an assault with the Roman strong short swords.
Now the legion was just as truly an invented machine as a steam engine is; and it had a greater influence on history than the steam engine has ever had thus far. It was by means of their legions that the Romans passed outside of the walls of Rome, and conquered all of Italy. It was by means of their legions that the Romans conquered all the coast peoples that bordered the Mediterranean Sea, subdued Gaul, Europe and Egypt and Asia, and became the greatest masters of the world that the world has ever seen.
The first war of the Romans that history calls great was their war against the splendid and wealthy city of Carthage, situated on the opposite side of the Mediterranean, inhabited by descendants of the Phœnicians. They were an aggressive and energetic people, but only commercially. They were not of the warlike cast, and delegated the work of national defense to hired soldiers and sailors. They had one great advantage over the Romans in the possession of an excellent navy.
The Romans resolved to create a navy. With characteristic energy and practical ability, they devoted themselves at once to both the acquisition of the personnel and the material, and the adequate training of the crews. It is stated that within two months from the time of starting, Rome possessed a hundred quinqueremes, the largest galleys of those days, having five tiers of rowers; though they had had none when the war broke out. The first naval battle took place near the promontory of Mylæ. Naturally, the Romans were at a great disadvantage as compared with the experienced officers and sailors in the Carthaginian fleet; for though the Roman soldier was far better than the Carthaginian, the Roman sailor was inexperienced and unskilful. To remedy the difficulty, the Romans made a simple but brilliant invention. They provided each quinquereme with a "corvus," that consisted essentially of a drawbridge that could be lowered quickly, and that carried a sharp spike at its outer end; and then arranged a plan whereby each quinquereme should get alongside of a Carthaginian, drop the drawbridge at such a time that the spike would hold the outer end of the drawbridge in place on the Carthaginian deck, and Roman soldiers should then rush across the drawbridge and attack the inferior Carthaginian soldiers.
Few more brilliant inventions have ever been made; few have been more successful and effective. The battle ended in a perfect victory for the Romans, and constituted the initial step in the subjugation of Carthage by Rome.
There were three wars in all, called Punic Wars. The great Carthaginian General, Hannibal, invaded Italy by land in the Second War, and after a campaign marked with a high order of daring and ability, threatened Rome herself after a brilliant victory near Lake Trasimene. Another victory followed at Cannæ, but a decisive disaster later on the Metaurus River. So the Second War was won by Rome. But Carthage still existed, and menaced the commercial, naval and military dominance of Rome. Therefore war was brought about at last by Rome, and Carthage destroyed completely.
The conduct of Rome toward Carthage cannot be justified on any grounds of any system of morality accepted at the present day; and yet it cannot reasonably be denied that it was better for human progress that Rome should prevail than Carthage. The Romans, harsh and ruthless as they were, were less so than the Carthaginians; and they had an element of strong manliness and a comprehensive grasp of things beyond mere commerce and money-getting and ease and comfort that the Semitic Carthaginians wholly lacked. The effect of the conquest of Carthage by Rome was a little like that of the conquest of Persia by Alexander.
During the same year (146 B. C.) when Rome destroyed Carthage, she also destroyed Corinth in Greece, and brought Greece and Macedonia under her sway. She had previously (190 B. C.) defeated Antiochus the Great, and taken from him nearly all his territory in Asia Minor.
By the year 58 B. C., Rome had become the most powerful nation in the world and still preserved a republican form of government. In that year, 58 B. C., the man who probably is the most generally regarded as the greatest man who has ever lived, appeared upon the stage of history. His name was Julius Cæsar.
He appeared in that year, because he went then from Rome to Gaul, and started on those brilliant and in many respects unprecedented campaigns which have had so profound an effect on history, and which for originality in conception and execution have had no rivals since.
At this time, Italy and the lands of Africa and Asia on which Alexander had impressed the civilization of Greece, were prosperous and well-governed; but beyond those countries only barbarous customs prevailed, and only a primitive civilization reigned. The lands that lay north and northwest of Italy, throughout all Gaul, were inhabited by savage tribes that were in a state of continual war with each other. In the southern and middle parts the effects of Roman civilization might be dimly seen; but in the southwestern part, and in the north, especially among the German tribes on the Rhine, and the Belgæ near the North Sea, a condition of virtually pure savagery prevailed.
Into such a country Cæsar marched, at the head of a body of men wholly inferior in numbers to those they were to meet, not superior to them in courage or physical strength, but considerably superior to them in discipline, and vastly superior in the weapons and methods that had gradually been invented, with the progress of civilization. Thus, while the Roman machine was superior as a machine to any that the Gauls could bring to bear, it was smaller; so that the question to be decided was whether the superior excellence of the Roman machine was great enough to balance its inferiority in size. Looking back from our vantage ground on the history of the campaigns that followed, we feel inclined to answer the question in the negative, unless we consider Cæsar himself a part of the machine. It is true that the campaigns were decided in favor of the Roman machine; but there seems little ground for doubting that they would not have been so decided, if the genius of Cæsar had not managed the Roman machine and made improvements from time to time.
Cæsar had had little experience as a soldier, but his habits of life and traits of character were of the military kind. As the campaigns progressed, his courage, equanimity and rapidity of thought and action were continually displayed; – yet not to such a degree as to put him in a higher class than many other generals of history, or to account wholly for his marvellous successes. One peculiar ability, however, he possessed and exercised in a degree greater than any other general of history: and it was by the exercise of that ability that his most extraordinary victories were achieved, and his generalship especially distinguished from the generalship of others. That ability was inventiveness.
His first contact was with the Swiss (Helvetii), who were about to leave the barrenness of their mountain lands, and march west to the fertile lands beyond. As this would take them through Roman territory and tend to drive the Gauls into Italy, open Switzerland to occupation by the Germans, and point a road thence for them also into Italy, Cæsar hastened to the Rhône River, destroyed the bridge which they would naturally go over, and forbade the Swiss to attempt to cross the river. The Swiss pleaded with Cæsar to permit them to cross. As Cæsar realized that the Swiss were too greatly superior in force to be kept back, unless he could strengthen himself in some way, he asked time for reflection, and told them to return in two weeks. When the Swiss returned at the end of that time, their astonished eyes disclosed to them the fact that Cæsar had constructed walls and trenches and forts at every point where a passage could reasonably be attempted.
It may be objected that walls and trenches and forts were not new, and that therefore Cæsar invented nothing. This may be admitted as an academic proposition; but nevertheless, it was clearly the ingenious and wholly unexpected construction of certain appliances by Cæsar that opposed the barbarous Swiss with barriers which they could not pass. It may even be argued with much reason that the conception and successful execution of Cæsar's plan as a whole constituted an invention, even though the material used was old. Certain it is that a situation was created which did not exist before, and that it was the creation of this situation, and not the exercise of strength or courage, that was the determining factor in stopping the Swiss. Froude says of Cæsar, "He was never greater than in unlooked-for difficulties. He never rested. He was always inventing some new contrivance."
Cæsar realized fully the value in war of mechanical appliances, and took careful measures before he left Italy to supply his army adequately with them, and also with men trained to use them. Besides the fighting men strictly considered, Cæsar took a considerable number of engineers with him, and expert men for building bridges, and doing mechanical work of many kinds. The ingenious and frequent use that Cæsar made of these men and of mechanical appliances was the most powerful single factor that contributed to his success.