
Полная версия
Invention: The Master-key to Progress
That language should later be used for manifold other purposes would be most natural; for many other arts have been invented primarily to further man's first aim, the preservation of his life, and have afterwards been employed for other purposes. The uses of clothing, houses, knives, guns and of nearly all weapons are cases in point.
The New Stone Age seems to have passed gradually into the Age of Copper, because doubtless of a more or less accidental discovery when native copper was seen upon the ground, or when some copper ore was subjected to fire. The metal, by reason of its great durability, ductility, elasticity and strength, came to be used for many purposes – the first use being probably in weapons; for weapons were the main dependence of the people in their struggle against beasts.
A great advance was made when bronze was discovered, with which weapons and tools of many kinds could be made that were harder than those of copper. Then the Age of Bronze succeeded the Age of Copper. One can hardly imagine that bronze was really invented; for it is difficult to see how, knowing the softness of copper and tin, any primeval man could have imagined a metal made from them much harder than either, and then proceeded to make it by mixing about seven parts of copper with one part of tin. The gradual improvement made in bronze implements, and the different kinds of bronze that later appeared (made by altering the proportions of tin and copper) were doubtless due more to constructive and engineering methods than to pure invention; but nevertheless a considerable amount of inventing must have been required; for one can rarely effect any important improvement in any weapon, instrument or tool, without first imagining the improvement, and then endeavoring to effect it.
In fact, an overwhelming majority of the "inventions" for which patents are issued by our Patent Office, are for mere improvements over existing apparatus; and the bald fact that the thing accomplished is only such an improvement, instead of the creation of something different from everything else whatever, like the telephone or phonograph, does not debar the achievement from being classed as an invention. The pointed screw was merely an improvement over previous forms of screw, and yet it was an invention of high originality, novelty and importance. Obviously, improvements occupy various positions not only in importance and scope, but also in the relative degrees in which invention and construction were employed to bring them into being.
It is held by some that no purely human act can possibly create anything really new, that "there is nothing new under the sun," and that therefore every so-called invention made by a man must be merely a novel arrangement of already existing objects.
Of course, no man "creates" anything, in the sense that he makes anything whatever out of nothing; but it is a well-known fact that he has created many things in the sense that he has made many entities to exist that had not existed before as such entities; for instance, man made the speaking telephone to exist. The speaking telephone did not exist before Bell invented it, and it did exist after he invented it. To say that Bell did or did not create the telephone conveys a meaning dependent wholly on the meaning in which the word "create" is used. Men ordinarily use the word with such a meaning that it is correct to say that Bell created the speaking telephone; it being understood as a matter of common sense that Bell did not create the metals and other material parts which he put together to make the telephone.
Used in this sense, primeval man (or more correctly some primeval men, and probably a very few) created certain weapons, implements and utensils, that gave the men who used them such mastery over wild beasts and over men who did not use them, that the steps since taken toward civilization were made possible.
Our whole civilization can be traced back to those inventions, and can be shown to proceed from them and be based upon them. No other basis that civilization could have proceeded from can even be imagined; for the actual progress of events was the outcome of the actual nature of man, and the actual nature of his environment.
We seem forced to conclude, therefore, that we owe our civilization primarily to the invention of certain primeval implements and weapons, the art of making fire, etc., and therefore to the inventors who made the inventions. This does not mean that we do not owe it to other things besides inventions, and to other men besides inventors; for it is obvious that we owe it to all the facts of our history, and to such of our ancestors as did anything to advance it. We owe it in part, for instance, to the men who framed the laws that made living in villages and cities possible, to the men who executed the laws, and to all the men and women who observed the laws and gave examples of righteous living. For it is obvious that, no matter what inventions were made, the march of civilization could not have even started, unless there had been a sufficient number of good and intelligent men and women to keep the human procession in good order from the first.
It may be pointed out here that, although every human being has much of evil in his nature, yet even the most depraved person desires other people to be good. Even thieves see the advantage to themselves resulting from the fact that most men do not steal; murderers have no inclination toward being themselves murdered, and human beings as a class see the benefits of morality and good living throughout society as a whole. For this reason, and for the still more important reason that most individuals are not very different in their characteristics and abilities from the average of all individuals, the tendency of society is to reduce men to a common level; so that we see only a small fraction who are extremely good or extremely bad, extremely brilliant or extremely stupid, extremely large or extremely small, etc. Similarly, there is only a small fraction of the people who have done much good individually or much harm, or who have exercised individually any noticeable influence of any kind.
We may reasonably conclude, therefore, that there were only a few men in primeval days who performed any acts that entitle them to individual recognition; and as the only records that have come down to us indicate that the most important acts were the inventing of certain implements, we seem forced to conclude that most of the recognition accorded to individuals of primeval days may be limited to a very small number, and they inventors.
Who they were, and where and when they lived, is not known and probably never will be. For countless centuries their names and personalities have been forgotten as wholly as those of many beasts. But maybe other achievements like those that have exposed the history of certain Oriental kings and wise men to our knowledge, will some day tell us who were the inventors who started the march of human progress, and pointed out the road that it should follow.
Yet, if we infer the probable conditions of the remote past from the conditions of the present and recent past, we shall have to conclude that, while the names and deeds of prehistoric rulers may some day become known to us, and even the names of authors, poets and song singers, the names of the original inventors will be forever hid. For inventors have ever been depreciated in their day; even at the present time, despite the known facts as to what inventions and inventors have done for every one of us, the inventor as an inventor is lightly regarded, and so are his inventions. So are his inventions until they have ceased to be regarded as inventions, and have been accepted as constituent parts of the machine of civilization. By that time the inventor has often been forgotten.
The Age of Iron succeeded the Age of Bronze in the countries from which we have inherited our civilization; but in Africa bronze does not seem to have been discovered until after iron was. Iron being an element like copper, and not an alloy of two metals like bronze, it seems probable that its discovery, like that of copper, followed the act of heating stones with fire. The coming of iron seems due therefore to discovery rather than to invention; but yet the mere discovery that a very hard substance had been accidentally produced would of itself have brought forth no fruit. One is almost forced to infer from probability that the fact must have become known to many men, but only as a plain and uninteresting fact. Finally, some man realized that that hard substance was superior to bronze for making weapons, and then set to work to ascertain exactly what kinds of stone it could be gotten from, and exactly what process gave the best results.
To us who have been carefully taught the facts known at the present day, and whose minds have been trained by logic and mathematics to reason from effect to cause, and to construct frameworks of cause wherefrom to gain effects, it seems that anyone who noted that the hard substance which we call iron came from heating certain stones, would immediately invent a process for making iron in quantities. But prehistoric man had no knowledge whatever save that coming from his own observation and the oral teachings of the wise men; mathematics and logic did not exist; and the only training given him was in those simple arts of hunting, fishing, field tilling, etc., by which he earned his livelihood. For a mind so untrained and ignorant to leap from the simple noting of the accidental production of the metal to a realization of its value, then to a correct inference as to the possibility of producing it at will, then to a correct inference as to the method of producing it, and then to devising the method and actually producing iron at will, suggests a reasoning intelligence of an order exceedingly high.
Nevertheless, the art of making iron may have originated not so much from effort as from inspiration; the process may have been less one of reasoning than one of imagination, less one of construction than one of invention. In fact, when we realize that imagination is almost wholly a pure gift (like beauty, or artistic genius or a singing voice) while the reasoning and constructive faculties require long education, we may reasonably conclude that the production of iron and of all the metals and processes in prehistoric times, was probably attributable mainly to invention.
The crowning invention of prehistoric man was that of writing; for it lifted him out of his dependence on oral teachings, with their liability to error and forgetfulness, into a condition in which the facts and experiences of life, and the reasons for failure or success, could be put into permanent form, and supply sure bases from which to start on any line of progress in the future.
The production of the art of writing seems to have been a pure invention, and it has always been so regarded. Nothing resembling writing is to be found in nature; nowhere do we see in nature any effort to preserve any records of any kind. How man, or a man, was led to invent writing we can only imagine, for we cannot ascertain. When we realize, however, how entirely novel an undertaking the production of writing was, and that there is no process of mere reasoning by which a man could arrive at a decision to produce it, we seem forced to conclude that it must have been caused by one of those inexplicable conceptions that imagination puts into the mind, and that constitute an inspiration, coming from the Great Outside and its ruler, the Almighty.
In fact, if one ponders the history and teachings of the Christian religion (in truth of all religions), and notes that the revelations on which they are believed to have been founded seem to have come unbidden to certain men as inspirations from On High, he must realize how similar are the conceptions that come to inventors in a field less spiritual, but yet actual. For in the case of each basic invention, an idea seems to have come unbidden to the mind, and grown and developed there.
The first writing was what we call picture writing, in which representations in outline of well-known objects were scratched with a hard point on some softer substance. This form of writing probably began in the Old Stone Age. It continued for different lengths of time among different peoples, as have all other characteristics of any stage of civilization; and it is practiced in some degree by some peoples even now. In fact, one might with reasonableness declare that many of the illustrations used in books and magazines and papers, many of the paintings and drawings that adorn our walls, and many of the moving pictures in our places of amusement convey messages by means of pictures, and are therefore forms of picture writing.
As the intelligence of man increased, and his consequent need for better means of expressing himself in writing increased, the idea occurred to someone to use conventional drawings to represent vocal sounds, instead of pictures of visible objects. The first writing of this kind, called phonetic writing, used characters that represented spoken words, and therefore required many characters and necessitated long and tedious study to master it. It was gradually replaced among most peoples by an improved phonetic system, in which each character represented a syllable instead of a word; though the Chinese have never wholly abandoned it. The syllabic system needed, of course, fewer characters, and was much more easily learned, much more flexible and generally satisfactory. The syllabic system was finally replaced among the more progressive peoples by the alphabetical system, in which each character represents a separate vocal sound. As the number of separate vocal sounds is few, only a few characters are needed. In most alphabets, the number of characters varies between twenty-two and thirty-six.
We of the present day plume ourselves greatly on our achievements in invention, and point to the tens of thousands of scientific appliances, books and works of art with which we have enriched our civilization. To most of us, prehistoric man was an uncouth creature, living in caves and uncleanly huts, and so far removed from us that in our hearts we class him as little higher than the beasts. Yet to prehistoric man we owe all that we are and all that we have. The gift of life itself came to us through him; and so did not only our physical faculties, but our mental, moral and spiritual faculties as well. It was prehistoric man who invented the appliances without which the wild beasts would not have been overcome, and the man, wilder than himself, been kept at bay; by means of which the soil was tilled, and boats were made to move upon the water, and villages and towns were built. It was prehistoric man who invented spoken language and the arts of drawing, painting, architecture, weaving and writing. It was prehistoric man who started the race on its forward march, and pointed it in the direction in which it has ever since advanced. It was prehistoric man who made the inventions on which all succeeding inventions have been based. The prehistoric inventor exercised an influence on progress greater than that of any other man.
CHAPTER II
INVENTION IN THE ORIENT
The first countries to pass into the stage of recorded history were Egypt and Babylonia. Excavations made near the sites of their ancient cities have brought to light many inscriptions which, being deciphered and translated, give us clear knowledge of the conditions under which they lived, and therefore of the degree of the civilization that they had attained.
As we note the progress that the inscriptions show us to have been made beyond the stage reached by prehistoric man, it becomes clear to us that much – if not most – of that progress could not have been made without the aid of writing. One cannot conceive of the invention and development of Astronomy, for instance, without some means of recording observations that had been made.
In developing the art of writing itself, much progress was effected in both countries, and many improvements were made in the art itself that must have been due to that lower order of invention which consists in improving on things already existing. In addition, invention was employed in devising and arranging means for preserving the writings in an enduring form. In Babylonia, this was done by making the writing on soft tablets of clay about an inch in thickness, that were afterwards baked to hardness. In the case of records of unusual importance, the precaution was sometimes taken of covering the baked inscription with a thin layer of clay, making a duplicate inscription on this layer, and then baking it also. If afterwards, from any cause, the outside inscription was defaced, it could be removed and the inside inscription exposed to view.
In Egypt, the writing was done on sheets of papyrus, made from a reed that grew in the marshes. To devise and make both the baked clay tablets and the papyrus, it is clear that invention had to be employed; for nothing exactly like them existed in nature. Thus the invention of the art of writing was supplemented by the invention of the art of preserving the records that writing made. The act of writing would have been useful, even if no means had been invented for preserving the things written; even if the things written had perished in a day. But the importance of the invention of writing was increased ten thousand fold by the invention of the means for preserving the things written; because without that means it would have been impossible by any process of continual copying of tablets to keep at hand for reference that library of records of the past on which all progress has been based, and from which every act of progress has started, since some inventor of Babylonia invented baked clay tablets and some inventor of Egypt invented papyrus.
It may be objected that there is no reason for assuming that any one man invented either; that each invention may have been the joint work of two men, or of several men. This of course, is true; but it does not minimize the importance of either invention, or the credit due to the inventors. It simply divides the credit of each invention among several men, instead of giving it all to one. It is a notable fact, however, that, although some inventions have been made by the joint work of two men, and although some books have been written, and some music has been composed by two men working in cooperation, yet such instances have been rare.
Many men combine to do constructive work of many kinds, and millions combine to work and fight together in armies; and it is an interesting fact that the working together of many men has been made possible by inventions, such as writing and printing. Yet there is hardly any other kind of work that is so wholly a "one man job" as inventing. The fact that only one man, as a rule, makes a certain invention, or writes a certain book, or composes a certain musical piece, or does any other inventional work, seems to spring naturally from the original fact that an invention begins with a picture made by imagination on a mind. Now a picture so made is an individual picture in an individual mind. If the picture is allowed to fade, or if from any cause the mind that received it does not form it into a definite entity, no invention is made. If, on the contrary, the mind develops the dim picture into a definite entity of some kind, that mind alone has made that invention; even if other minds improve it later by super-posing other inventions on it.
It is true that sometimes a man who receives from his imagination a mental picture of some possible invention will communicate it to another man, and that other man will contribute some constructive work, and make the dim picture into a reality; so that the complete invention resulting will be the joint product of two men. It seems to be a fact, however, that these dim pictures have rarely been disclosed while in the formless period, and that almost every invention of which we know the history, was made by one man only.
It need hardly be interjected here that we are discussing inventions only, and not the acts of making inventions practicable in the sense of making them useful or commercially successful. At the present day, there are few inventions indeed, which even after having been completed as inventions, need no modification at the hands of the engineer and the manufacturer, before they are suitable to be put to practical use.
*****That the Babylonians realized the importance of their invention is proved by the fact that their baked tablets were carefully preserved, and that in some cities large libraries were built in which they were kept, as books are kept in our libraries at the present day. When the expedition of the University of Pennsylvania made its excavations near the site of the ancient city of Nippur, in the southern part of Babylonia near the city of Babylon, a library was discovered that contained more than thirty thousand tablets.
The writing of the Babylonians, while phonetic, was a development of picture writing, each character expressing a syllable, and was made of wedge-shaped characters. From the shape of the characters the adjective cuneiform has been applied to the writing, the word coming from the Latin word, cuneus, a wedge. Syllabic writing was in use for probably three thousand years among the peoples of western Asia.
The Babylonians utilized their ingenuity and inventiveness in divers ways, and accomplished many things that help to form the basis of our civilization, without which we cannot imagine it to exist. Their creations were of a highly practical and useful kind, and illustrate the proverb that "necessity is the mother of invention." From the fact that their ships sailed the waters of the Persian Gulf, and had need of means to locate their positions and determine their courses from port to port, and from the fact easily noted by their navigators that the heavenly bodies held positions in the firmament depending on their direction from an observer, and on the month and season and the time of day, the study of the heavens was undertaken; with the result that the science of astronomy was conceived and brought into existence.
It may here be asked if this achievement can properly be called an invention. One must hesitate a little before answering this question either negatively or positively; because such an achievement is not usually called an invention, and yet it cannot truthfully be denied that there is nothing in Nature like the science of astronomy, and that therefore it must have been created by man. It cannot reasonably be denied, also, that after the science had at last been formulated, it was as clearly a distinct entity as a bow and arrow or a telephone. Furthermore, it does not seem unreasonable to suppose that, before any of the principles of astronomy were laid down, before anyone even attempted to lay them down, before anyone even attempted to ascertain the laws that seemed to govern the movements of the heavenly bodies, the idea must have occurred to someone that those heavenly bodies were all moving in obedience to some law; and a more or less confused and yet real image must have been made upon his mind of a great celestial machine. He must actually have imagined such a machine. This first act would be quite like that of the inventor of a mechanical device. The next act would be to observe and record all the phenomena observable in connection with the movements of the celestial bodies, then to analyze and classify them. This series of acts would not, of course, be inventive or even constructive. They would rather be like those studies of any art, without which no man could be an inventor in that art.
The analysis having been completed, the positions of the heavenly bodies at various times having been ascertained and tabulated, the next step would seem to be to construct a supposititious machine of which each part would represent a heavenly body, and in which those various parts would move according to laws induced tentatively from the actual motions of certain heavenly bodies. If it were afterwards found that all positions of each part, predicted in advance by applying the laws tentatively induced, corresponded to the actual positions of the heavenly body that it represented, then the supposititious machine could be truthfully declared to be a correct imitation of the great celestial machine. That is, the machine could be declared to be successful.