bannerbanner
Invention: The Master-key to Progress
Invention: The Master-key to Progressполная версия

Полная версия

Invention: The Master-key to Progress

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
12 из 25

One of the most important inventions of a purely scientific character made during the period was one that has never been known by any other name than "Atwood's machine." It is an interesting illustration of the addition of invention to investigation, in that its end was – merely investigation; and it reminds us of a fact that many people are prone to forget, that invention may be applied to almost any purpose whatever, and that even a "machine" may be devoted to a purpose not utilitarian.

Atwood's machine was the outcome of studies into the relations between force and a body to which force may be applied. Galileo had shown that a body subjected to a constant force, like that of gravity, will gradually acquire a velocity and at a constant rate; and also that this rate, or acceleration, is proportional to the force (leaving out the effect of air resistance). Atwood's machine consisted merely of an upright with a pulley at its upper end over which passed a cord, to both ends of which weights could be attached. In any given experiment, a weight was attached to one end and allowed to fall free; but another weight could automatically be attached to the other end by a simple device, when the first weight had fallen through any predetermined distance. If the added weight were equal to the first weight, the velocity of movement became uniform at once; while if it were less, the velocity approached uniformity to a degree depending on the approach to equality of the two weights. While this machine did not establish any new law, or prove anything that Newton had not proved before, it supplied a very valuable device for conducting quantitative experiments with actual weights, and for instructing students.

The first important improvement in the art of printing was made by a Scotch goldsmith named William Ged, about the year 1725. It is now called stereotyping, and it seems to have been successful from the first, from a technical point of view. It was far from successful from a financial point of view, however, mainly because of the opposition from the type-founders; so that Ged died without realizing that he had accomplished anything. Ged's invention was not put to practical use for nearly fifty years after his death; but after that, its employment extended rapidly over the civilized world. Ged's experience was bitter, but no more so than that of many other discoverers, inventors and benefactors. He did not profit in the least by his invention; in fact, it must have brought him little but exasperation and discouragement. But can we even imagine civilization to exist as it exists today, if stereotyping had not been invented?

An invention of a highly original kind was made some time in the middle of this century which is attributed by some to Daniel Bernoulli, one of the eight extraordinary investigators and scholars of that family. According to this theory, the pressure of any gas is due to the impact of its molecules against the walls of the vessel containing it. Naturally, the greater the density of the gas, and the greater the velocity of the molecules, the greater is the pressure. This theory has greatly assisted the study of gases, and contributed to the investigation of electric discharges in gases and partial vacua, and therefore to the modern science of radio-activity.

In the year 1640 there came to the little throne of the Margravate of Brandenburg a coarse and violent man, who conceived a principle of government that seems to have been wholly novel at that time, the principle of efficiency. Having conceived this idea clearly in his mind, he proceeded to develop it into a system of administration, in spite of opposition of all kinds, especially inertia. He ruled till 1688. He found Brandenburg unimportant, disordered and poor; he left Brandenburg comparatively rich, with a good army, an excellent corps of administrators, a very efficient government, and a recognized standing before the world. For his contribution to the cause of good government, he is known in history as The Great Elector. He might be called, with much reasonableness, the inventor of governmental efficiency, if Julius Cæsar had not in some degree forestalled him.

He was followed by his son, who contributed nothing to this cause or to any other, but who was able to take advantage of his father's work and be crowned as King of Prussia. He was followed by his son, King Frederick William I, who was a man like the Great Elector, his grandfather, in the essential points of character, both good and bad.

He was somewhat like Philip of Macedon also; for he conceived the idea of making his army according to a certain pattern, novel at that time, though considerably like the pattern that Philip had employed. The likeness was in so organizing and training the soldiers that a regiment or division could be handled like a coherent and even rigid thing, directed accurately and quickly at a pre-determined point, and made to hit an enemy at that point with a force somewhat like the blow of an enormous club. He succeeded during his reign of twenty-seven years in developing his conception into such a perfect and concrete reality, that he was able on his death in 1740 to bequeath to his son a veritable military machine – the first since the days of Rome.

These two Frederick Williams were inventors in the broad sense of the word, and made inventions that have had an influence on history since they died, as great as that of almost any other contemporary inventions that can be specified. Their immediate influence was to make it possible for the son of King Frederick William, Frederick the Great, to put Prussia in the first rank among the nations, and to lay the foundations of the German Empire.

It may be objected that the ultimate result was not extremely great, after all, because the German Empire fell in 1918. To this possible objection, it may be answered that, nevertheless, the doings of Prussia and the German Empire have had an enormous influence up to the present time; and that, though the empire itself has ceased, the influence of its policies and doctrines, of its military system, and, above all, of its doctrine of efficiency in government has not ceased, and shows no signs of ceasing. Besides, history still is young.

Frederick the Great made no inventions in improving the military machine bequeathed him; but he did operate it with inventiveness, daring and success. He showed these qualities in his actual operations in the field; but he showed inventiveness in an equal degree before those operations took place, in the plans which he prepared. As a tactician, Frederick could hardly help being good, in view of the training he had received and the military atmosphere in which he had been born and bred. But no amount of training could have given Frederick the brilliant and yet correct imagination that enabled him to see entire situations clearly and accurately with his mental eye; that enabled him to form a correct picture of the mission in each case, the difficulties in the way of accomplishing it, and the facilities available for his use. And, equally, no amount of training or knowledge or experience could of themselves have given him the constructive ability necessary to build up such plans as he built up, for accomplishing the mission with the facilities available and in spite of the difficulties.

Frederick's first invention was his successful invasion of Silesia. This may be called by some "an invention of the devil," and perhaps it was inspired by him. But even if Frederick's conception came straight from the devil, it was a brilliant conception, nevertheless, as the conceptions of the devil himself are popularly supposed to be. So original in conception and so perfect in development was Frederick's invented plan, that he had seized the capital of Silesia before Austria had taken any real defensive measures of any kind.

During the first half of Frederick's reign, or twenty-three years (from 1740 to 1763), he was engaged continually in war or preparation for war; and in both activities he had to plan to fight against odds that often seemed overwhelming. They would have overwhelmed any man, except a man like Frederick. It is true that Frederick had two advantages, the best trained army, and the fact that all his forces, military and political, were united under one head – his own. But it is the verdict of history that even these advantages were far from sufficient to explain his victories; that his victories cannot be explained except on the ground that Frederick showed a generalship superior to that of his foes. In what did its superiority consist? A careful study of his campaigns, even if it be not in detail, shows that Frederick was able to invent better plans than his adversaries, to invent them more quickly, and to carry them into effect more promptly. If he had been born under other stars, he might have exercised his inventiveness in such ways as men like Guericke, for instance, did; as is shown by his gathering around him, in the peaceful period of the latter half of his reign, a company selected from the most eminent philosophers and scientists of the age; and as is shown with equal clearness by his admirably conceived and executed measures for the better government of his country.

The middle of the eighteenth century is especially distinguished by the success of some extraordinary and brilliant experiments with electrical apparatus. One of the most important in results occurred about 1746, in the town of Leyden, where Muschenbroek invented a device that made possible the accumulating and preserving of charges of electricity. This appliance consisted of merely a glass jar, coated on the outside and the inside with tin foil. It was a most important invention, and it is still in general use, and called the Leyden jar.

The Leyden jar was soon put to practical work in electrical investigations, notably by the Royal Society in London; and many valuable demonstrations were made with it. Among these were the firing of gunpowder by the electric spark that passed when both surfaces of tin foil were connected by an external conductor; and the transfer of the spark over a distance of two miles, by using one discharging conductor or wire two miles long, the earth acting as the return conductor.

But the greatest results came from the investigations of Benjamin Franklin, who proved that there was only one kind of electricity, that the two coatings of tin foil were both charged with it, that one had more than its ordinary quantity, while the other had less, and that the spark was caused by the transfer of electricity from one coating to the other. These discoveries were as much as any one discoverer might reasonably be expected to contribute; but Franklin soon followed them by his discovery of the power of points to collect and discharge electricity. He then pointed out with extraordinary clearness the fact that all the phenomena which had been produced by electricity were like those produced by lightning; and made the suggestion that lightning and electricity were identical.

This was an interesting suggestion, but a suggestion only. To make it into a theory, or prove it as a law, an invention was required. Franklin made the invention. He conceived the idea of bringing down the electricity, with which he imagined that a storm-cloud was charged, by means of a long conductor, and of drawing off a spark from the lower end of the conductor as from an electrical machine. The long conductor he had in mind was a high spire that was about to be erected in Philadelphia. The erection of the spire being delayed, his imagination presented to his mind the picture of a kite flying near the cloud, and the charge flowing down the cord, made into a conductor by the accompanying rain. Forthwith, he embodied his conception in definite form by preparing a kite to which was connected a long cord, that ended with a piece of non-conducting silk, that was to be held in the hand, and kept dry if possible, and a key that was secured to the junction of the conducting cord and the non-conducting silk. The expectation was that the key would receive the charge from the cloud and give it out as a spark, if Franklin applied to it the knuckle of his disengaged hand. The invention was a perfect success in every way; sparks were given off, a Leyden jar was charged, and subsequent discharges of the Leyden jar were made to perform the same electrical feats as jars charged from ordinary electrical machines. (June, 1752.)

The courage shown by Franklin in performing this experiment may here be pointed out. To the eye of a casual observer, he must have been trying to get struck by lightning.

This brilliant invention caused Franklin to conceive another brilliant invention, the utilization of the discovery he had just made in combination with his previous discovery of the power of points to collect electricity. He embodied his conception in what we now call "lightning rods," by erecting on the highest points of houses thin metal rods or conductors, the lower ends of which were buried in the earth, while their upper ends were sharpened to points, and made to project upward, above the houses. Franklin's theory was that the points would collect the electricity from the clouds and allow it to pass harmlessly through the conductors into the ground. The invention worked perfectly, and has been utilized everywhere ever since.

Naturally, Franklin's epochal discoveries stirred the scientific world in Europe, and gave a great impetus to the study of electricity and the other physical sciences. One of the earliest important discoveries that followed (made by Mr. Cavendish) was that the electrical spark could decompose water and atmospheric air, and make water by exploding mixtures of oxygen and hydrogen. An epochal discovery was made by Mr. Cavendish about 1787, when he exploded a mixture of oxygen and nitrogen and obtained nitric acid.

In 1790 Galvani discovered that, if two dissimilar metals were placed in contact at one end of each, and if the free ends are put into contact with the main nerve of a frog's hind leg and the thigh muscle respectively, spasmodic muscular movements would ensue. In investigating the cause of this phenomenon, Volta discovered that if the lower ends of two dissimilar metals were immersed in a liquid they would assume opposite electrical states; so that if their outer ends were joined by a conducting wire, electricity would pass along it. This led him at once to the invention of the Voltaic cell. The enormous value of the Voltaic cell in building up the science of electricity need hardly be pointed out. It is still used in electric telegraphy as a source of current.

During the eighteenth century, the relations between chemistry and heat were very ill defined; but they were cleared up gradually by the researches of such men as Black in Scotland, Priestley and Cavendish in England, and Lavoisier in France. Black's work was mainly in making investigations of the phenomena of heat. In the course of them he discovered the important fact that different substances require different amounts of heat to be applied to a given mass to raise its temperature 1°. From this discovery arose the science of calorimetry, which deals with the specific heats of all substances, solid, liquid and gaseous, and which is necessary to the present science of heat and the arts that depend upon it. About 1774 Dr. Priestley discovered oxygen.

Lavoisier prosecuted rigorous researches in heat and chemistry, and finally made a discovery that cleared up a great fog of doubt as to the nature of oxidation, by proving that it consisted in an actual attack on a metal by oxygen, and that the increased weight resulting from oxidation was that of the oxygen that became associated with the metal in the form of rust. He therefore disproved the theory formerly loosely held that the increase in weight was due to the escape of a spirituous substance which the chemists of that day imagined to depart from the metal, and called by the name phlogiston. An analogous and equally valuable contribution by Lavoisier was that of introducing the use of exact measurements into the study of chemistry. The result of his labors was to put the science of chemistry on a new basis and to separate it from physics entirely.

It might be supposed that Lavoisier would live and die in great honor. He lived in comparative obscurity, and was publicly guillotined on a false accusation. He requested a brief respite, in order to complete an important experiment, and was told in answer that "the Republic has no need of philosophers." This was France's reward for one of the most useful lives that has ever been lived.

One of the most important industrial inventions ever produced and one of the first of the long list of inventions for making things by machinery that had formerly been made by hand, was the spinning machine, that was invented by Dr. Paul in England about 1738. Spinning is an exceedingly ancient art, and consists in forming continuous lengths of thread by drawing out and twisting together filaments of such material as wool, cotton, flax, etc. This art was practiced in many of the ancient countries; and it seems to have been practiced in essentially the same way in England in the eighteenth century A. D., as in Egypt and Assyria long before the eighteenth century B. C. About 1738 Dr. Lewis Paul invented and patented a simple mechanism that anyone with imagination could have invented at any time during the two or three thousand years before, in which the filaments were drawn between rollers. The invention seems to have been moderately successful from the start; for it is stated that in 1742 a spinning mill was in operation in Birmingham in which ten girls were employed, and in which the motive power was supplied by two asses. Paul's invention was improved by a weaver named Hargreaves, who invented the "spinning Jenny"; and it was later brought to a high state of efficiency and value by an invention of a poor and wholly uneducated barber, named Richard Arkwright. The spinning machines of the present day are of the highest order of intricacy, efficiency and usefulness; but they are all based directly on the invention of Arkwright, and his was based on the previous inventions of Paul and Hargreaves. Few persons have contributed so much as these three men of humble station to the comfort and well-being of the race.

On July 3, 1775, George Washington arrived at Cambridge, near Boston, and took command of an army of about 17,000 men that faced a British army occupying Boston. Washington devoted his energies to organizing and training his motley force during the ensuing fall and winter, the enemy making no decided move to drive him off. Finally, on March 4, 1776, having conceived a plan that promised success to him, he suddenly seized and fortified Dorchester Heights, about two miles south of Boston, from which he could command the whole of Boston and the channel south of it, by means of guns which he had ordered, to be dragged through the snow from Ticonderoga. His plan worked perfectly; for the British General Howe, after a vain attempt to drive Washington away, evacuated Boston himself, and took his army to Halifax.

This was Washington's opening move in our War of the Revolution. It was the execution of a plan admirably conceived. There may seem little of originality or brilliancy in it to us now, looking at a map of Boston in the quiet and safety of a library, but there must have been a great deal of merit and originality in it; for it took a British major-general completely by surprise, and compelled him to evacuate an important stronghold with a precipitancy that must have been distinctly galling to British pride. Few neater feats of strategy can be found in military history.

Washington's next feat was in extricating his force from a distinctly perilous position in Brooklyn in front of a superior British force, retreating across the East River to New York, and landing near what is now called Fulton Street. This was on August 30, 1776. The next three months were spent in maneuvers that showed great clearness in conception and great energy in execution on Washington's part, and ended with his occupying Trenton, and Howe occupying New York with the bulk of his forces. Washington had only a little more than 4,000 men, while Howe had 30,000. Washington's troops were discouraged, half-ragged, underfed and untrained; Howe's were elated, well clad, well fed and thoroughly trained. Washington was in as dangerous a plight as can easily be imagined. He extricated himself by conceiving and carrying into execution the brilliant plan of crossing the Delaware River on Christmas night, forcing his way through floating ice, and falling on the amazed camp of the Hessians on the other side. His invention worked perfectly, and effected almost a complete reversal in the relative conditions of the opposing forces; for it put the British on the defensive, and made them withdraw all their forces from New Jersey.

Thenceforward, Washington, by the exercise of imagination, constructiveness and sheet force of will, fought a continual fight against forces that were superior in material and training, but inferior in mentality. Finally, in August, 1781, the crisis came. The British were occupying New York, and Washington was in front of it, threatening to attack it, but knowing that he could not do so with success. About August 14 he received a letter written in July by Admiral Comte de Grasse, then in the West Indies, saying that he would start with his fleet and a force of troops for Chesapeake Bay on August 13. Washington knew that the British General Cornwallis was entrenched at Yorktown, near the mouth of the Chesapeake, with a force considerably inferior to his own. He instantly proceeded to embody in action an idea that he had already conceived – that of leaving the vicinity of New York secretly, and marching with the utmost possible despatch to Yorktown, and calling on de Grasse to assist him to capture Yorktown, and if possible Cornwallis. No invention ever succeeded better. Its influence on history was to precipitate the collapse of the entire British program of hostilities, and cause the establishment of the United States.

The balloon was invented about 1783. Mr. Cavendish had found that hydrogen was about seven times lighter than air, and Dr. Black had forthwith delivered a lecture in which he pointed out that a thin light vessel inflated with hydrogen should be able to rise and float in the air. He conceived the idea of the balloon, but made no invention. The Italian philosopher, Cavallo, about 1782, inflated soap-bubbles with hydrogen gas, but went no further. The subject of making balloons filled with hydrogen was widely discussed; but the first balloon really to rise was the hot-air balloon invented by Joseph and Stephen Montgolfier. This balloon made a successful ascent on June 5, 1783, carrying the two brothers, flew about ten minutes, and alighted safe, after a trip of about a mile and a half. This was followed on August 27 by a flight of a balloon filled with hydrogen gas, the design of which was made by the physicist Charles, and the cost of which was met by a popular subscription. The flight was followed shortly by many others. The first employment of balloons in practical work was in making observations of the enemy by the French army in 1794.

An important invention for utilizing mechanical power in place of hand-power was the power-loom invented in 1785 by Edmund Cartwright. This was an invention of the most clean-cut kind, originating in the conception by the Rev. Dr. Cartwright of the possibility of doing much more weaving by mechanical power than by hand, then constructing the machine to accomplish it, and then accomplishing it. An interesting fact in the early development of looms for weaving was the determined and angry opposition of weavers to each improvement in succession.

Another invention also utilizing external power, made near the end of the eighteenth century, was the hydrostatic press. It consisted of a vertical cylinder, fitted with a piston prevented by suitable means from rising, except against great pressures; the piston resting on a liquid in the bottom of the cylinder, which was connected by a small pipe with a small pump, by which more liquid could be forced in. When the pump was operated the pressure per square inch on the piston of the pump was communicated to each square inch of the large piston in the press, and a force exerted equal to that pressure multiplied by the difference in area of the two pistons. This is the model on which hydraulic jacks and many other hydraulic mechanisms are constructed; and it has taken a prominent part in the development of the science of hydraulics ever since it was invented.

На страницу:
12 из 25