Полная версия
Двойная спираль. Забытые герои сражения за ДНК
Предисловие
Не «еще одна книга»Никогда не рекомендуется начинать с признания, но мне придется сознаться, что не я первый взялся за эту тему. Книгами о ДНК, среди которых будет и пара бестселлеров, легко можно уставить двухметровую полку. Зачем вам тогда сопровождать меня по настолько проторенной дорожке?
Я мог бы пытаться привлечь вас «уникальными торговыми предложениями», которым издатели придают большое значение. Пока не выходило ничего похожего на эту книгу, это правда. Она представляет собой не столько историю исследования молекулы, сколько истории людей, которые оказались с этим связаны и которые были различным образом очарованы, соблазнены или разъярены. Период, которому посвящена книга, – первые 85 лет ДНК – также необычен, поскольку он заканчивается открытием двойной спирали. Знаменитая работа Уотсона и Крика взмыла на научный небосвод за десятилетие до того года, когда (если верить Филипу Ларкину) начались сексуальные отношения. Это означает, что ДНК родилась в 1868 году, гораздо раньше, чем я (и, возможно, вы) ожидали. Разгадка двойной спирали является одной их самых блестящих драгоценностей на платье науки XX столетия, но это лишь один из эпизодов в длинном, все громче бурлящем потоке открытий; игнорировать все, что предшествовало этому эпизоду, будет так же неразумно, как вырвать самый яркий бриллиант из королевских регалий и закрыть глаза на остальное.
Если вас интересует, как и почему была написана эта книга, я могу сказать, что она возникла в результате незнания, любопытства и пары случайных встреч. Как и все остальные, я полагал, что знал историю ДНК. Я прочел книгу Джеймса Уотсона «Двойная спираль» в довольно нежном возрасте и сразу почувствовал себя зрителем одного из величайших научных шоу столетия. Это была захватывающая книга с увлекательным сюжетом, написанная настоящим нобелевским лауреатом, и я жадно глотал каждый ее атом: два молодых героя вовлечены в гонку за великолепным призом, в которой все достается победителю; своего рода злодей (ужасно талантливая, но колючая «Рози» Франклин); и какое-то предательство с намеком на шпионаж. Промелькнули и картины того, что двигало великим ученым: длинные летние дни в Кембридже были наполнены теннисом, вечеринками и красивыми девушками, но ночами Уотсону снились молекулярные структуры. Он рассказывает свою историю со смесью непринужденности и напряженного возбуждения и заканчивает тем, что в свой 25-й день рождения он стал «слишком стар, чтобы быть необычным».
Я был всего на несколько лет младше Уотсона, когда поступил в Клэр-колледж в Кембридже осенью 1971 года, чтобы изучать медицину. Мой экземпляр «Двойной спирали» прибыл вместе со мной, возможно, в надежде, что он наладит для меня связь с тем блеском и эмоциональным подъемом, какими было проникнуто пребывание Уотсона в Кембридже. Тень двойной спирали все еще ясно прослеживалась через 18 лет после ее открытия. Уотсон был научным сотрудником в Клэр-колледже; Кавендишская лаборатория, где все произошло, располагалась по дороге в секционный зал в Анатомическом отделении; а неподалеку был Eagle – паб, куда Крик однажды влетел в обеденное время, чтобы рассказать всем, что они с Уотсоном раскрыли тайну жизни.
Но удивление поджидало меня позже, когда на первом курсе я пил чай вместе с Дороти Стрэнжвэйс, старым другом семьи. Дороти была олицетворением Кембриджа и научной среды: некогда работавшая в Ньюнхэм-колледже и занимавшаяся исследованием культуры тканей трезвомыслящая старая дева, которая не обратила бы ни малейшего внимания на то, что ее называют синим чулком. На пенсии она стала мягче и была олицетворением благодушия до тех пор, пока я не упомянул источник моего вдохновения. «Эта ужасная книга! – оборвала она. – Тот человек не должен был ее писать, а им не стоило ее публиковать».
Я был одновременно сбит с толку и заинтригован, но она твердо перевела разговор на другую тему. Вопрос никогда больше не поднимался, и я давно забыл этот случай, а через 14 лет услышал, что Дороти умерла. Потом, спустя 30 лет, я вновь столкнулся с Уотсоном, Криком и Франклин, когда читал книгу об истории борьбы с полиомиелитом. Для меня стало неожиданностью, что все они занимались структурой вирусов; последние работы Франклин, опубликованные посмертно, были посвящены кристаллографии полиовируса.
Встреча со знакомыми персонажами вне контекста заставила меня взглянуть на них свежим взглядом. Я перечитал «Двойную спираль» впервые с 1971 года – и пожалел, что не упросил Дороти Стрэнвэйс рассказать мне больше. Автобиографии Фрэнсиса Крика и Мориса Уилкинса («третьего человека двойной спирали») были менее возмутительными, но все же казались односторонними. Безвременная трагическая смерть украла у Розалинд Франклин возможность закончить свои работы, сидя за столом, не говоря уж о том, чтобы начать собственную автобиографию, но другие попытались написать ее историю за нее – и стереть память о непривлекательной токсичной «Рози», изображенной Уотсоном в «Двойной спирали». Было очевидно, что под действием сильных страстей эти увлекательные воды были взбаламучены и основательно загрязнены.
Когда я попытался выяснить, откуда взялась сама двойная спираль, я быстро понял, как мало я знал. За первые 85 лет ДНК появилась Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны. Эти события, нанизанные, как бусины, на нить повествования о ДНК, выбраны неслучайно. Каждое из них в какой-то мере повлияло на историю ДНК.
К моему стыду, я также обнаружил, что знал мало или совсем ничего не знал о многих ученых, работа которых заполнила эти 85 лет и которые проложили дорогу к расшифровке двойной спирали. В свое оправдание скажу, что они мельком упоминались (если вообще упоминались) в большинстве классических книг о ДНК. Что с ними произошло? Некоторые были стерты из исторической памяти, потому что, как объяснил один выдающийся историк[1], все, произошедшее до 1900 года не имеет значения для «чистого знания» XX столетия. Другие пропали во тьме, когда прожектор всеобщего внимания переключился на Уотсона, Крика, Уилкинса и Франклин. И, к сожалению, почитание предшественников вышло из моды. Ньютон признавал, что видел дальше только потому, что стоял на плечах гигантов, но немногие современные исследователи достаточно внимательны, чтобы отдать должное тем, кто шел перед ними.
Некоторые из этих оставленных без внимания гигантов были истинными первооткрывателями ДНК. Они пробивались сквозь лес неизведанного в те времена, когда узкие просеки знания были немногочисленны и располагались далеко друг от друга, прокладывая путь, который шедшие за ними воспринимали как должное. Уотсон, Крик и их товарищи блестяще справились с задачей, но они занимали уникальную выгодную позицию – им оставалось сложить последние несколько деталей гигантского пазла, который несколько десятилетий собирали их предшественники.
Если вы уже знаете конец этой саги, стоит ли ее читать? Если вы станете, то найдете историю, в которой достаточно героев и злодеев, красивых научных открытий и грубых ошибок. Зрелище становится не менее эффектным, если гигантские прыжки вдохновения оказываются неудачными, причем некоторые из них красиво исполняют «чемпионы мира» в своей области. И это наука без прикрас, где исследователи показаны в своей естественной среде, демонстрирующими характерные для себя модели поведения. Некоторые поступают абсолютно честно, а другие скорее напоминают Макиавелли, чем Франциска Ассизского. В некоторых случаях вам покажется сложным назвать кого-либо героем или злодеем, и ваше суждение может поменяться по ходу развития сюжета. Временами вы будете видеть научную работу в самых благородных ее проявлениях, а в другое время она превратится в мышиную возню с несколькими примечательными мышами. Некоторые из последних могут оказаться наравне с первооткрывателями полиовакцины, названными (я цитирую) «настоящими ублюдками», и вы можете начать размышлять над тем, что есть гены, которые предварительно называют БЛЕСТЯЩИЙ и УБЛЮДОК и которые расположены так близко друг к другу в геноме человека, что обычно они наследуются совместно.
Кроме того, вы перенесетесь в места, куда, возможно, не ожидали попасть. Сохо, Лондон, где микроскопист отвлекается от изучения половой жизни орхидей, чтобы выделить из живой растительной клетки крошечную линзовидную структуру, которую он называет ядром. Санаторий высоко в Швейцарских Альпах, где умирает человек, положивший начало всему этому, – не зная о сообщении в ведущем медицинском журнале США о том, что открытое им вещество может излечить болезнь, которая его убивает. Факельное шествие студентов и ученых, проходящее по извилистым улочкам Гейдельберга и приветствующее своего профессора, возвращающегося из Стокгольма с Нобелевской премией. Лаборатория в Нью-Йорке, где великолепное новое лекарство от страшной инфекции, известной как «капитан армии смерти» появилось слишком поздно. «Площадка X» и группа американских и британских физиков, которые упорно работают над «49», где «X» = Беркли, Калифорния, а «49» = плутоний для атомной бомбы. И удивительное сокровище из архивов, но не Лондона или Кембриджа: рентгеновский снимок, где виден четкий черный крест, доказывающий, что ДНК имеет форму спирали, – сделанный за год до знаменитой фотографии 51 Розалинд Франклин человеком, о котором я никогда не слышал.
Итак, вот она: история о ДНК и ее забытых героях, какой я не ожидал ее увидеть. Это очень сильная история, и собирать ее воедино было интересно, увлекательно и трогательно, а еще такая работа заставляла задуматься. Я надеюсь, что мне удалось превратить все это в увлекательное чтение, ведь оно того заслуживает.
Глава 1
Обратная перемотка
Случай № 1[2]. Причина – пулевое отверстие в задней части черепа – как и время смерти 19-летнего мужчины вопросов не вызывало. Вместе со своим братом и отцом он был среди 8100 мужчин и мальчиков-мусульман, убитых сербскими солдатами, ворвавшимися в город Сребреницу в восточной Боснии 11 июля 1995 года.
Большую часть прошедших с тех пор лет молодой человек провел в массовом захоронении среди нескольких сотен других тел. Когда его останки были эксгумированы, скелет был собран, а небольшая часть, извлеченная из правой бедренной кости, была отправлена на генетическое тестирование. Данные анализа показали близкое соответствие другому скелету из той же погребальной ямы и одному из 100 000 образцов крови, предоставленных выжившими родственниками жертв резни.
Несколькими месяцами позже, в 19-ю годовщину зверского преступления, их мать похоронила двух своих сыновей. Она положила их рядом с мужем, чьи кости были опознаны в другой могиле 10 годами ранее.
Случай № 2[3]. Женщина 25 лет с сильным семейным анамнезом рака молочной железы пришла в клинику генетической консультации вместе с мужем. Они пришли за результатами ее недавнего скрининга. Доктор объяснил, что у нее точечная мутация гена, который называется BRCA1. Она хотела узнать, что это значит, он подробно объяснил ей. Это настолько небольшое изменение, что его легко пропустить: просто одна «опечатка» в генетическом коде у начала гена. Однако это провоцирует осложнения. После дальнейшего обсуждения она пошла домой, чтобы все обдумать.
Вернувшись через несколько дней, она сказала доктору, что решила сделать операцию по удалению обеих грудей.
Случай № 3[4]. Еще одно место массовых захоронений, проводившихся поспешно, но на этот раз в Англии. Большая часть из 188 похороненных в трех чумных ямах рядом с замком Херефорд были детьми в возрасте от 5 до 14 лет. Они умерли в конце весны 1349 года, когда Черная смерть уже убила половину населения континентальной Европы и приближалась к своему апогею в Британии.
Анализ материала, взятого из зубов нескольких скелетов в чумной яме 2, показал, что фрагменты ДНК соответствуют последовательности Yersinia pestis, бактерии, вызывающей бубонную чуму.
Случай № 4[5]. Яйцо было взято из гнезда рядом с руслом высохшего ручья в уезде Сися провинции Хэнань в центральной части Китая. Хотя срок годности яйца несколько истек, в его содержимом оказались фрагменты ДНК в достаточно хорошем для анализа состоянии.
Последовательность ДНК была опубликована, что вызвало большой ажиотаж как первая попытка взглянуть на генетическое строение яйцекладущих динозавров, которые вымерли более 65 миллионов лет назад.
Эти четыре случая иллюстрируют с разных сторон огромную власть, которой наделена простая молекула: дезоксирибонуклеиновая кислота, или ДНК. «Это заложено у меня в ДНК» стало общеупотребительным выражением. Мы считаем само собой разумеющейся научную веру в «генетический код», а именно в то, что миллионы правил, которые создают жизнь и позволяют передать ее следующим поколениям, зафиксированы в структуре этой молекулы.
Анализ ДНК – еще один предмет нашей веры. Дьявольски умные технологии, которые получили настолько широкое распространение, что больше не кажутся волшебством, позволяют амплифицировать невообразимо малое количество ДНК, вывести ее последовательность и сравнить ее с огромной библиотекой контрольных образцов. В результате, практически невидимая клеточная проба, взятая с внутренней поверхности вашей щеки, может определить, являетесь ли вы отцом своего ребенка, совершили ли преступление полвека назад и происходите ли от Чингисхана. Методы ДНК-дактилоскопии, использовавшиеся в Случае 1, также помогли установить имена и личности неизвестных солдат, павших на полях Первой мировой войны; разобраться с происхождением Этци[6] – охотника и собирателя бронзового века, погибшего высоко в Итальянских Альпах более 5000 лет назад; и проследить масштабы скрещивания неандертальцев и Homo sapiens примерно за 60 000 лет до того.
Случаи 3 и 4 напоминают нам, что ДНК лежит в основе существования всех живых организмов, за исключением вирусов, которые в любом случае нельзя назвать в строгом смысле живыми и которые основаны на близком родственнике ДНК – рибонуклеиновой кислоте (РНК). Помимо возможности провести бактериологическую диагностику более чем через 650 лет после смерти, Случай 3 указывает на необычайную долговечность ДНК. Подобно Свиткам Мертвого моря, фрагменты молекулы могут сохраняться в читаемой форме на протяжении тысячелетий, а возможно и десятков тысячелетий.
Тем не менее все хорошее когда-нибудь заканчивается. ДНК не могут выжить через миллионы лет, это, к сожалению, означает, что клонированные динозавры обречены бродить по воображаемым местностям. Это также означает, что «древняя ДНК», извлеченная из ископаемого яйца динозавра, должна была попасть откуда-то еще. При более тщательном анализе оказалось, что она принадлежит менее экзотическим видам – в том числе грибку, мухам и человеку. Когда ДНК амплифицируется в лаборатории миллионы раз, артефакты появляются поразительно легко; ультрамикроскопические частицы загрязнителей – единственная спора грибка, экскременты мухи, пара чешуек перхоти – быстро отправят молекулярную палеобиологию в царство иллюзий и самообмана. Случай 4 прекрасно иллюстрирует опасность злоупотребления ДНК своей властью.
Случай 2, молодая женщина с опасной мутацией BRCA1 – самого распространенного гена, определяющего наследственный рак молочной железы, демонстрирует нам, как сильно ДНК-революция изменила медицинскую генетику – и какой большой путь нам еще предстоит пройти. Теперь мы можем выявлять опасные мутации и указывать на них с необычайной точностью: например, мутация у молодой женщины представляет собой однобуквенное изменение, затрагивающее 5325 основание (букву в генетическом коде) гена BRCA1, длина которого составляет 125 951 основание и который начинается с 43 044 295-го основания 17-й хромосомы. Молекулярная генетика может не только делать прогнозы, но и давать надежду. В некоторых условиях можно понять, каким образом аномальный белок, выделяемый мутировавшим геном, причиняет вред, и разработать новые препараты для коррекции этого дефекта. До сих пор, однако, эта мечта стала терапевтической реальностью лишь для нескольких заболеваний, к которым не относится наследственный рак молочной железы.
Затруднительное положение молодой женщины также обращает наше внимание на достижение, для характеристики которого недостаточно приевшихся превосходных эпитетов: побуквенная расшифровка всей последовательности ДНК (генома) Homo sapiens, который насчитывает 3,24 миллиарда оснований. Наша ДНК поделена на отрезки различной длины и запихана в 46 хромосом. Это просто необычайное мастерство упаковывания. ДНК общей протяженностью около трех метров каким-то образом свернута и сплющена так, чтобы поместиться в ядро одной клетки – и при этом постоянно занятые элементы клеточного механизма еще могут проникать в этот клубок и соединяться с определенными генами.
Если ДНК вытащить из ядра и разгладить все ее завитки, у молекулы все же останется запланированный извив. Это восхитительно: две элегантные спирали, которые точно соответствуют друг другу и всегда находятся на одном расстоянии, наматываясь на невидимую длинную ось. Это легендарная двойная спираль, с которой имена Уотсона и Крика связываются так же автоматически, как формула E = mc2 связывается с Эйнштейном, а тоник – с джином.
И это может звучать шаблонно, но такая структура скрывает в себе ключ ко всей жизни и наследственности.
Двойная спираль: краткий интерактивный турМолекула ДНК выглядит как невообразимая с точки зрения архитектуры лестница в небо. Безусловно, она проделывает большой путь вверх. Если увеличить ее в масштабе до ширины винтовой лестницы в средневековой башне, – такой, как в замке, где она была открыта, – ДНК из ядра одной клетки растянется более чем на три миллиона километров, то есть в восемь раз больше расстояния до темной стороны Луны.
В этой книге еще рано начинать углубляться в недра молекулярной генетики, но приятная прогулка по короткому отрезку генома человека поможет обрисовать картину. Для начала найдите 17-й хромосому и идите вдоль нее, пока не дойдете до основания номер 43 044 295, затем вырежьте отрезок, который начинается здесь и заканчивается через 125 951 основание. Возможно, вы помните, что это ген, мутация которого приводит к наследственному раку молочной железы, BRCA1. Увеличьте эту последовательность до ширины средневековой винтовой лестницы, встаньте на ее конце и взгляните, как она скомпонована (Рис. 1.1).
Вы сразу же заметите, что две спирали, идущие параллельно друг другу, красивы, но неинтересны. Они обе сделаны из одних и тех же двух компонентов, соединены вместе и повторяются до бесконечности: химическое соединение, называемое «фосфат», поскольку в основе его лежит атом фосфора, и маленькая молекула сахара (дезоксирибоза), по которому названа сама ДНК (дезоксирибонуклеиновая кислота). Возможно, монотонная структура спиралей не кажется достаточно красноречивой, чтобы составить генетический код, которому как-никак нужно содержать достаточно букв для написания правил для миллионов различных молекул. На самом деле, винтовые линии играют исключительно конструктивную роль, каждая из них выполняет функцию скелета, позволяющего спирали сохранить форму. Магия двойной спирали заключается в постоянном интервале, разделяющем два спиральных остова. Если поставить молекулу вертикально, вы увидите, что пространство между спиралями заполняется горизонтальными ступеньками, расположенными через регулярные интервалы, при этом на каждый полный поворот лестницы приходится 10 ступенек. При внимательном рассмотрении вы увидите, что все ступеньки сделаны по одному замыслу, но нельзя точно предсказать, какая конструкция будет у конкретной ступеньки. Каждая ступенька состоит из двух разных частей, каждая из которых прочно прикреплена к спиральному остову и которые соединяются в середине. Вы вскоре заметите, что есть только четыре разные половины ступеньки, при этом две из них короткие, а две – длинные. Чтобы сохранять постоянное расстояние между спиральными остовами, все ступеньки должны быть одинаковой длины. Этого можно добиться, только если делать каждую ступеньку из одной короткой и одной длинной половины ступеньки; ступенька, сделанная из двух коротких или двух длинных частей, приведет к тому, что элегантные винтовые элементы будут прогибаться или выпячиваться, нарушая всю красоту и функциональность двойной спирали.
Рис. 1.1. Молекула ДНК, изображенная в виде винтовой лестницы с остовом и без него. Справа: четыре возможные ступени; A и T всегда идут вместе, так же как C и G.
Проделывая путь по большему набору ступеней – по такому количеству, которое вы захотите рассмотреть, – вы заметите, что конструкция каждой ступени непредсказуема, но не совсем произвольна. Это потому, что молекула всегда подчиняется простому правилу: каждая их двух коротких половин ступеньки может соединяться с одной определенной длинной. Если мы обозначим (не совсем произвольно) короткие половины ступенек C и T, а длинные половины – A и G, то A всегда соединяется с T, а G – с C.
Из этого правила следует, что если вы видите только половины ступенек, крепящиеся к одному из спиральных остовов, то вы можете абсолютно точно предсказать, какие половины ступенек соединяются с противоположным спиральным остовом. Например, если последовательность половин ступенек с одной стороны представляет собой C, затем A, T и, наконец, G, то с другой стороны им будут соответствовать только половины ступенек G, T, A и C, именно в таком порядке. Половины ступенек представляют собой плоские геометрические молекулы, называемые основаниями; незыблемое правило, что C соединяется с G, а A – с T, таким образом, называется «спариванием оснований». Открытие данного феномена было признано заслуживающим Нобелевской премии, что представляется обоснованным, поскольку этот принцип лежит в основе генетических механизмов, которые делает каждого из нас тем, кто мы есть.
Пока вы усваиваете эту информацию, вы можете взглянуть поближе на ген BRCA1. Поднимитесь на самый верх и встаньте на верхнюю ступеньку. Если вы боитесь высоты, не смотрите вниз: до низа более 67 километров. Теперь спускайтесь вниз по лестнице равномерно на одну ступеньку за секунду. Спуск нельзя назвать комфортным, поскольку расстояние между ступенями свыше 30 сантиметров, и чтобы дойти до низа, потребуется около 35 часов. Если начать спуск в 9 утра, то через 45 секунд после 10:28 вы будете на 5325-й ступеньке сверху. Половина ступеньки, крепящаяся к спиральному остову слева от вас, будет A, потому что такова версия BRCA1 у тех, кому повезло. В случае молодой женщины, напряженно ожидающей, когда ей дадут заключение в клинике генетической консультации, вместо этого A было G. Это единственное отличие между теми, кому повезло и кому не повезло; каждая из остальных 125 950 ступенек абсолютно идентичны у тех и других.
БлокбастерДвойная спираль отражает «строение дезоксирибозной нуклеиновой кислоты», как Дж. Д. Уотсон и Ф. Х. К. Крик из Кавендишской лаборатории в Кембридже предположили в своей краткой работе[7], опубликованной в журнале Nature 25 апреля 1953 года. Их заявление, что такая структура обладает «новыми свойствами, которые представляют значительный биологический интерес», полностью подтвердилось. Двойная спираль и спаривание оснований произвели революцию в нашем понимании механизмов жизни и наследственности. Их открытие стало воплощением сложных задач и славных триумфов науки и считается одним из ключевых моментов в биологии.
Этот момент запечатлен на черно-белой постановочной фотографии 1950-х годов, где два исследователя показаны вместе со своим открытием. Фрэнсис Крик, еще моложавый, но уже лысеющий, стоит справа, указывая на модель двойной спирали логарифмической линейкой, раздвинутой, как будто он выполняет вычисления. Напротив него сидит Джим Уотсон, неуклюжий и поразительно молодой, он глядит на результат их работы снизу вверх, раскрыв рот, как будто фотограф велел ему смотреть на свое создание с благоговейным ужасом. А металлическое причудливое сооружение, напоминающее паука и стоящее на лабораторной скамье между ними, – это то, что обеспечило им Нобелевскую премию и почетные места среди величайших ученых всех времен.
События, приведшие к этой фотографии и статье в журнале Nature, начались с того, что Уотсон выявил связь, которую не заметили все остальные. Он разглядел, как два типа оснований – одно короткое, одно длинное – могут проходить через промежуток между двумя спиральными остовами и соединяться вместе, образуя одну из горизонтальных ступенек. Многие смотрели бы на такое гениальное решение как на величайшее открытие в истории ДНК. Но это также отличный пример того, как удача сопутствует подготовленному уму, и в данном случае практически вся подготовка рано развившегося блестящего ума Уотсона была проделана другими людьми. Не только тем, кто показал ему фотографию 51 с ее красноречивым спиральным рисунком, или тем, кто исправил его вычисления, чтобы соединить основания друг с другом, но всеми теми, кто разработал основы химии ДНК или отстаивал невероятное утверждение, что она может играть какую-то роль в наследственности.