bannerbanner
The Autobiography of an Electron
The Autobiography of an Electronполная версия

Полная версия

The Autobiography of an Electron

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
3 из 6

To return to my experience in connection with a telegraph instrument, I found that we were being subjected to a series of forced marches. The whole regiment of electrons along the line made a forward move. The line of march ended in a short length of fine wire wound around a piece of soft iron to form an electro-magnet. The end of the wire dipped into the earth, as I have explained in an earlier chapter.

Now all that we electrons had to do was to make a forward move, halt, forward again, another halt, and so on. Sometimes the signal to halt was longer in being given than at other times, but we found that this was intentional, and that there were two definite lengths of march. I have explained already how we marching electrons cause an electro-magnet to attract a piece of iron and let it go again as soon as we cease marching. It only remains for me to give you a general statement of how we work the Morse telegraph.

Man has arranged a little lever with an iron end-piece immediately above the electro-magnet, so that the magnet may attract it. Of course you are aware that it is the electrons within the soft-iron core of the electro-magnet who produce the magnetic effect. Every time we electrons in the surrounding wire make a forward move, the electro-magnet pulls down the end of the little lever referred to. As long as we keep marching, so long will the end of the lever remain down, but the moment we halt, the lever is free to be pulled up by a spring attached to it. The movements of the lever indicate the length of our long and short marches, and it is by means of these that man sends signals. All that he does is to control our march, by means of an electric push and a battery at one end of the wire, and it is we who produce the signals at the distant end of the wire. Each time man presses the push we move the distant lever. When we pull the lever down it is so arranged that it makes a sound like "click," and when we let it spring up against a stop it makes another sound not unlike "clack." Our long and short marches are therefore converted into long and short "click-clacks." Man has made a simple code of signals representing his alphabet, and right merrily do we rap out the signals for which we receive orders at the distant end of the wire, while some one at the other end listens to the sounds we cause to be made.

I have told you enough of our duties to let you see how we are able to carry man's news from one part of the earth to any other part. By far the greatest part of our signalling work is done with this simple Morse sounder.

It may interest you to note that we can produce those signals far faster than man can read them. When man found this out he took advantage of our powers. He made an automatic transmitter which could manipulate the make-and-break of the battery current far more rapidly than any human fingers could do. Then as we rapped off the signals with lightning speed at the distant end, he attached a little ink-wheel to the end of the moving lever, so that it could mark short and long strokes on a ribbon of paper passing close to it. Although man could not distinguish the signals by his ear he was able to read the record of those we caused to be left upon the paper ribbon.

We have been made to work many other forms of telegraph instruments. In some of these we control type-letters, while in others we imitate handwriting, but all these are merely adaptations of our powers of marching. We are proud of our achievements in rapid signalling, which all right-thinking people have not been slow to acknowledge.

CHAPTER X

HOW WE COMMUNICATE WITH DISTANT SHIPS

THE SCRIBE'S NOTE ON CHAPTER TEN

In this chapter the electron deals with that modern marvel —Wireless Telegraphy.

Here the æther of space plays a very prominent part.

The author has given some particulars about the æther in the first chapter (What the Story is about).

In conjunction with that, the electron may be left to tell its own story.

Our duties in this case are totally different from those of which I have been telling you. While we electrons can do many wonderful things, we cannot march through space. We may be fired off like bullets from the sun to the earth, but that is quite another matter. I shall have something to say about that fact later on. You have seen already that man can make us jump only a very short distance, even when he has cleared our path of the obstructing air, as he does in a vacuum tube.

If men were to provide us with a complete path of metal atoms from the shore to the ship, we could set to work upon the simple plan which I have described in the preceding chapter. But, needless to say, man has more sense than to attempt to keep up metallic connection with a ship going away out to sea.

Even the wisest men were surprised when they heard that we electrons could signal through space to great distances without any connecting wires. We ourselves were not surprised. Had we not been doing this very thing from the foundation of the world? Our fellow-electrons in the sun have never ceased to communicate with those of us upon the earth. Of course I am referring at present to those æther waves which man calls heat and light. But the waves which we make to carry man's messages through space are of the very same nature, the only difference being that they are much longer, or, in other words, much farther apart. They do not follow each other so closely, and they do not affect the eye or the sense of touch. However, these long waves are able to bestir some of us electrons who are situated at a great distance from the sending electrons.

Our method of producing such waves in the æther is by surging to and fro from atom to atom in an upright wire. When we make a rapid to-and-fro motion we send out great waves in the æther. The original plan adopted by man was to make us jump across a spark-gap, but in this case also it was our rapid oscillation to and fro that produced the waves. If we wish the waves to carry to a great distance, we must club together in considerable force to supply the necessary energy. The energy which we can get from a battery and induction coil is not sufficient for any very long distances. In such cases we require the aid of a dynamo, a machine about which I shall have some experience to relate in another chapter.

In communicating through space, our position is very similar to that of two men shouting to one another over a distance. The one man disturbs the air, thus sending air-waves (sound) over to his friend, and these waves produce certain sensations which he can interpret. I should like you to understand that we electrons are upon a higher plane than atoms of matter. We cause waves in the all-pervading æther, not among clumsy particles of air. After these æther waves have travelled enormous distances they retain sufficient energy to disturb electrons situated at the distant place.

I shall tell you of the first experience I had in this connection. I found myself attached to an atom of nickel, a kind of atom which looks to us electrons very much like an iron atom, because it has nearly the same number of electrons composing it, only they are arranged differently. But I was telling you that I found myself on this nickel atom sealed up in a small glass tube. Of course there were myriads of similar atoms all around me, but I did not feel very happy. I was being urged forward, and yet I could not get across from some atoms to others, for the nickel was in the form of loose filings. From past experience I knew that there was a battery along the line somewhere; I could feel the strain. All of a sudden I was startled to find that I could move forward. Exactly what happened, I am not at liberty to tell, but this much I may say, that it was the arrival of some æther waves which altered the condition of things among the filings in the tube.

It has become quite a fashion in America to have motor-cars fitted up for wireless telegraphy. That the electrons play an important part in telegraphing through space is explained fully in Chapter X.

We had just started out on our march forward when we received such a shaking that we found ourselves in the same isolated positions as at first; we could not get across from one particle to another. More æther waves arrived, we made a fresh start, then came another rude shaking, and so on we went starting and stopping. Indeed, it was the regularity of these long and short marches that gave me the first idea that we were being controlled by some telegraph operator. We were amused to find that the rude shaking, of which I have been telling you, was caused by the action of some of our fellow-electrons. Some of them in their march around an electro-magnet in the receiving instrument caused a little lever to knock against our tube and give us a sudden jolt.

I should like you to notice that the energy with which we moved the telegraph instrument did not come from the distant station. It was a local battery which worked the receiving instrument, but this battery was controlled by the incoming æther waves affecting the tube of filings. There is really no mystery about the matter, but I am anxious not to take credit for anything more wonderful than we have actually accomplished.

We electrons have rendered a very great service to man by enabling him to communicate with his friends who are far out on the ocean, and cut off from all possible chance of material communication. We are willing to serve man on land also, though we very much prefer the ordinary marching arrangement if he will provide a connecting wire. The fact is that we find it very much more difficult to send æther waves over land than we do over water.

I have heard some men ask how many different telegraph instruments may be worked at one place simultaneously without confusion. That is a question for man himself to answer. We electrons are able to produce any variety of waves of different frequency or length; it remains only for man to construct apparatus that will respond only to a definite rate of waves. I hear that man has made considerable progress in tuning the wireless instruments.

Some men are eager to get us to carry messages through space across the great oceans from shore to shore. We shall not refuse, provided man supplies sufficient energy, but I must admit that we electrons prefer the submarine cable. Of course man may put this down to our laziness; we certainly prefer as little severe straining as possible.

I have been telling you of my earliest and only personal experience in connection with space telegraphy. I understand that greatly improved methods have been adopted since that time, but I have never happened to drift in their direction.

CHAPTER XI

HOW WE REPRODUCE SPEECH

THE SCRIBE'S NOTE ON CHAPTER ELEVEN

In the first part of this chapter the electron explains the part it plays in ordinary telephony.

The reader will picture the transmitting instrument at the one end of the line influencing the receiving instrument at the distant end.

Towards the end of the chapter the electron turns its attention to the newer subject of wireless telephony, which has been accomplished now over a distance of several hundred miles.

My scribe suggested a rather clumsy title for this chapter – "Electrons versus atoms as carriers of speech." I expect he made this suggestion without much thought, for there are two serious objections to such a title.

In the first place, we are not carriers of speech. We are controlled by speech at one end of the telephone line, and we make a reproduction of the speech at the distant end of the line. No sound passes between the two places; there is only a movement of electrons along the connecting line.

My second objection to the hurriedly suggested title is that it is hardly fair to make any comparison between the achievements of atoms of matter and those of ourselves. We are not in the same category as atoms. Besides, we electrons are dependent entirely upon the material atoms for making our work useful to man. For instance, we might keep on making waves in the æther for all time, and yet if the atoms of matter were to pay no heed to those imperceptible waves, man would never be aware of their presence. Indeed we electrons act solely as go-betweens. On the other hand, it is only fair to ourselves to point out that a group of atoms in one town could never communicate with a group of atoms in a distant town unless we electrons came to their aid. It is true that over a very short distance the atoms may communicate directly. For instance, if a heavy blow is given to a large gong, the atoms of metal may vibrate so energetically that they succeed in disturbing the atoms of gas of the surrounding atmosphere for some considerable distance. But in the case of speech, the speaker cannot supply any great energy, so that he can disturb the atmosphere only to a very limited distance. We electrons, however, can do yeoman service in this respect. We have enabled men to speak to one another over immense distances.

The whole affair is very simple. Man speaks and causes the atmospheric atoms to vibrate and impinge upon a light disc or diaphragm in a simple instrument which man has named the telephone. This vibrating disc presses upon a myriad of carbon particles contained in a small case or box, the disc forming one side of the box. When these carbon particles are pressed together we electrons can get across more easily from atom to atom. There is a battery urging us forward, but our motion is dependent entirely upon the manner in which the vibrating disc presses upon the carbon particles. I cannot describe our movement in the line-wire as a march; it is in reality a surging to and fro.

You will understand that this to-and-fro motion of the electrons in the line-wire varies according to the vibrations of the sending disc, which is controlled by the speaker's voice. At the distant end of the line we electrons bring our magnetic powers into action. We keep varying the attractive powers of an electro-magnet, according to the motion of the electrons in the wire. This ever-changing magnet produces vibrations in an iron disc which is fixed close to the magnet. This disc is set vibrating in exact sympathy with the sending disc. When the listener places this receiving disc close to his ear, the vibrations are carried by the atmospheric atoms to his hearing apparatus. All that we electrons have done is to cause one disc to vibrate in exact synchrony with another distant disc. But that is all that is required, for the receiving disc will reproduce similar air-vibrations to those set up by the man's voice at the distant place. I have pointed out already that we do not attempt to carry the sound. It is true that the atoms of matter do the hard work, but it is we electrons who enable a group of atoms in one town to communicate with a group of atoms in a distant town.

It was natural that as soon as man found that he could work his telegraph instruments without the aid of connecting wires, he should try to do the same with his telephone instruments. We were sorry when we found men trying to use the original spark-telegraphy methods for telephones. While we had no difficulty in operating a telegraph instrument by means of æther waves and the tube of filings, it was quite impossible for us to produce telephone vibrations on the same principle. This spark method was a too rough-and-ready plan. The waves we produced were like sudden splashes in the æther ocean, whereas we knew that we must produce regular trains of continuous waves in order to reproduce telephone vibrations. However, you may be aware that we have succeeded by a different arrangement of apparatus. Indeed it may interest you to know that one of my most recent experiences has been in connection with some wireless-telephone experiments.

Unfortunately I was not in a very favourable position to learn all that was going on, but it was quite exciting work. I happened to be attached to an atom of copper in a length of wire which had been run up into the air on a sort of flag-pole arrangement. I need hardly say that I was not alone, for by this time you will have become accustomed to picture myriads of electrons occupying a very small space.

We were set vibrating to and fro with tremendous energy, but what bothered me most was the great variation in our movements. It was the nature of these variations which gave me the clue that we were being controlled by the vibrations of a telephone disc. I can tell you we did make a complex series of waves in the surrounding æther! These waves went out through space and influenced some electrons stationed at a great distance. When these electrons at the receiving station were set in motion they controlled the electric current from a local battery which set a second telephone disc vibrating in synchrony with the one at the sending station.

On questioning some of my fellow-electrons who happened to have been nearer the transmitting part of the instrument than I had been, I got some interesting information. They tell me that there was a dynamo and an arc lamp in our circuit, while the telephone instrument was in a neighbouring circuit. The electrons surging to and fro in the telephone circuit influenced those energetic electrons in the arc-lamp circuit to which the ærial wire was attached. You see that my position in the ærial wire was not a very advantageous one for observing what was taking place.

This was truly a great achievement – to enable one man to speak to another distant hundreds of miles, and without the aid of any connecting wire. I think you will agree with me that we have excelled all past records in the world of wonders.

CHAPTER XII

OUR HEAVIEST DUTIES

THE SCRIBE'S NOTE ON CHAPTER TWELVE

Here the electron explains its behaviour in a dynamo at work.

The principle of the dynamo was discovered by Faraday in the thirties of last century.

He found that when a coil of wire was moved through a magnetic field, there was a current of electricity induced in the moving coil.

Experimental machines were constructed, and after a while a practical dynamo was evolved.

Wires are attached to a dynamo and the electric current is led out.

This current may be conducted to a distant tramway car, and, by sending the current through an electric motor, mechanical motion is produced and the car propelled along.

An electric motor is practically the same as a dynamo, but instead of turning its coil round in order to produce an electric current, we pass a current into the coil and it moves round. It will be sufficient to leave the electron to tell its own story.

This is another of those roving commissions in which I have been privileged to take part on more than one occasion.

If you think of the giant size of an electric tramway car or a railway train, and try to compare one of these with an electron, such as your humble servant, it will seem quite ridiculous that I should suggest that it is we electrons who move those huge vehicles. Yet such is the actual case.

Of course we require the application of very considerable power to urge us to so heavy a task. All the energy which we can get from a few electric batteries might enable us to drive a toy car, but when it comes to turning the wheels of a real car or train, we require a correspondingly greater amount of energy.

I may as well tell you quite frankly that we electrons are only the intermediaries or go-betweens. Indeed, you must have noticed that in every case we act merely as a connecting link between matter and the æther, and between the æther and matter.

But what I want to tell you of, is the part we play in moving an electric car or railway train. It is really all very simple if you could only see it from our standpoint. Picture a host of us attached to copper atoms in a coil of wire which is being moved through that disturbed æther called a magnetic field. We are set in motion immediately. It is true that when we are moved forward into the field we march off in one direction, only to be arrested and made to move off in the opposite direction as we leave the field, but it really makes no difference in our working capabilities as long as we are kept on the move. This is what is actually taking place in the armature of a dynamo as it revolves between the poles of the electro-magnet. There is no peace for us so long as the coil is kept revolving; we are kept in a constant state of rapid to-and-fro motion.

It is remarkable that the motion of electrons in an electric conductor can result in the movement of heavy vehicles. How this comes about is explained in Chapter XII.

This is all we electrons do in a dynamo, but when the ends of the outer circuit or mains are brought into contact with the ends of our revolving coil, we set the electrons in the mains surging to and fro in step with ourselves. Man describes this motion of the electrons in the mains as an alternating electric current, but by a simple commutator on the dynamo he may arrange that we set the electrons marching in one direction in the mains. This he describes as a direct electric current.

It is a matter of indifference to us whether man drives our coil round by means of a steam-engine, a water-wheel, or a wind-mill; all that we electrons want is to be kept surging or vibrating to and fro. Now you will be able to appreciate how we electrons get up sufficient motion to enable us to perform what I have described as our heaviest duties.

Perhaps you will find it difficult to believe me when I tell you that as we march along the connecting wire to a distant tramway car we transmit the energy through the surrounding æther, and not through the wire. This is our mode of working in every case, whether it be an electric bell, a telegraph, or telephone. That is to say, while we electrons move from atom to atom in the connecting wire, it is the disturbed æther surrounding us which transmits the energy. You must have realised by this time how very intimate is the relationship between ourselves and the æther.

To return to the tale of our tramway work, you will picture my fellow-electrons aboard the car being energised by the incoming current. Those electrons present in the armature coil of the motor are set into motion, as also are those in the wire of the neighbouring electro-magnet. The result is that these two sets of electrons so disturb the æther and affect one another that the coil is moved round into a different position. You will remember the experiment of which I told you, in which a magnetic needle would insist always in taking up a position at right angles to a wire in which an electric current is passing. Well, when the motor coil has turned into its new position, we electrons receive an impulse from our friends in the line-wire which causes us to retrace our steps in the coil. This action of ours causes the coil to make a further movement in the same direction as at first. Again we change our direction of march, and again the coil changes its position towards the electro-magnet. The sole duty of these electrons in the armature coil is to keep surging to and fro, while those electrons in the electro-magnet keep up a steady march in one direction. This arrangement necessitates the armature coil to keep changing its position continually, and when we have the armature coil spinning round at a steady pace, it is easy for man to connect the armature to the axles of the tramway car and cause us to drive the wheels round.

I need hardly say that it makes no difference to us whether we are asked to drive a tramway car, a railway train, or a host of machines in a factory or workshop. All that we electrons in the motor require is to have sufficient energy passed along to us from our fellows in the distant dynamo. Again I admit frankly that the atoms of matter play a very important part in these our heaviest duties, but you will see that without our active assistance they could not transmit the necessary energy to a distant car or train.

CHAPTER XIII

A BOON TO MAN

THE SCRIBE'S NOTE ON CHAPTER THIRTEEN

While it has been known for a long time that light and radiant heat are merely waves in the æther, it was not known until recently how these waves were produced.

The discovery of electrons has given us a reasonable solution of our difficulty.

The electron explains the actions of its fellows in this great work of producing light and heat.

На страницу:
3 из 6