
Полная версия
Story of the Aeroplane
Balancing the Machine
The balancing of a machine in mid-air is one of the most difficult problems in aviation. In the balloon this is easily accomplished because the principal weight, the basket with the passenger, is below the gas-filled sphere or compartment, and the balloon tends to right itself after any disturbance by the wind, much like a plummet when swayed out of its position.
Professor Langley, Lilienthal and others had sought to take advantage of this tendency in the construction of their machines by placing or arching the wings above the pilot or heavier portion of the mechanism. After a slight disturbance in mid-air the machine would then tend to right or balance itself and assume its former position. The practical difficulty of this arrangement, however, arose from the fact that when once set to swaying the gliders thus constructed continued to sway like the pendulum of a clock. The Wright brothers set themselves the task of finding some other method of preventing the biplane from dipping downward or upward at either side with the shifting of air currents. The first device to give steadiness of motion was a small movable horizontal plane, supported parallel with and in front of the two main planes, and by means of a lever, under control of the pilot.
At Kitty Hawk
Having after much study completed their glider, the Wright brothers sought a suitable place for their first tests. By correspondence with the United States Weather Bureau they learned that at Kitty Hawk, North Carolina, the winds are stronger and more constant than at any other point in the United States. This treeless waste of sand dunes along the solitary shore near the village afforded the privacy where they might carry on their work unmolested. Here in October, 1900, they spent their vacation testing their biplane glider. They sought to fly it in the face of the wind like a kite. This they succeeded in doing but it would not support the weight of a man. They then experimented with it, using light ropes from below to work the levers and guide it through the air. It was sufficiently responsive to encourage them and they went back home to make at their leisure a number of improvements.
The year following they returned to the same place with a larger machine considerably improved, but it still failed to lift the operator. Octave Chanute, of Chicago, with whom they had been in correspondence, came to witness their tests and examine their glider. They now decided to abandon much of the “scientific data” which they had collected from the writings of others and proceeded in the light of their own experience. They coasted down the air from the tops of sand dunes and tested with satisfaction their devices for guiding their air craft. In 1902, with additional improvements, they made almost one thousand gliding flights, some of which carried them a little over six hundred feet, more than twice the distance attained the previous year. All this time their object had been to control the machine while in air. Only after this was accomplished did they propose to add motive power to keep it above the earth. They wisely reasoned that it would be useless to apply this power to a machine that could not be directed and controlled.
The First Flight
The Wrights had now reached a point where they felt that they were ready to apply motive power, rise like a bird from the earth and direct their course through the air. A new machine was built with two planes, each six feet six inches wide and measuring forty feet from tip to tip. The planes were arranged one directly above the other with an intervening space of six feet. An elevating rudder of two horizontal planes ten feet in front of the machine, and a rudder of two vertical planes about six feet long and one foot apart in the rear of the machine were under control by levers close to the hands of the pilot, who, prostrate on the lower large plane, directed the course up or down, to the right or left at will. But the most remarkable features of all were the gasoline engine that was to give motive power and the propellers by which that power was to move the machine in its flight through the air. The mechanism, the result of patient study and arduous labor, had been perfected in the little shop at Dayton and had been brought to the barren sand coast of North Carolina for its first practical test. The engine, which developed sixteen horse power, was connected by chains with the two propellers, each eight feet in diameter at the rear of the biplane. The total weight was 750 pounds.
To give the machine a “start” it was driven rapidly along an iron rail by a cable attached to a weight of one ton suspended at the top of a derrick. When everything was at last in readiness, the engine was started, the propellers were set in rapid motion, the weight at the top of the derrick was released, the biplane was driven rapidly forward, and lo! bearing a man, it skimmed over the sand dunes! It continued only eleven seconds but landed without injury to pilot or machine. A small beginning indeed, but it proved the practicability of man flight and ushered in the era of aviation. A few days earlier in the same month on the banks of the Potomac a crowd of witnesses saw with keen disappointment the failure of Professor Langley’s flying machine, and as they turned away said mentally and not a few of them audibly, “Impracticable!” “It can’t be done.” On the sand near Kitty Hawk, in the presence only of the inventors and five others, life savers and fishermen from Kill Devil Hill Station near by, fortune rewarded two brothers unknown to the world and they achieved what had long been regarded as impracticable and impossible. Professor Langley worked long and patiently on his models and was very properly given $50,000 by the government to aid in an enterprise that was to give man dominion of the air. The Wright brothers with the same faith and unflagging zeal worked secretly in their little shop at Dayton without financial assistance and out of their small earnings conducted experiments on the Carolina coast, doing their own cooking to lighten expenses, and solved the problem that had thwarted the inventive genius of the world. No crowds, appreciating the significance of the event were present to applaud, nor did the brothers exult over the achievement. It was indeed only what they had confidently expected.
On the day of their initial success two other nights of slightly longer duration were made. The fourth flight continued fifty-nine seconds, almost a minute, and extended over a distance of 853 feet. The machine was then carried back to camp. In an unguarded moment it was caught by a gust of wind, rolled violently over the ground and was partially wrecked. But what mattered the loss? For the first time in the history of the world a machine carrying a man had raised itself by its own power into the air in free flight, had sailed forward on a level course without reduction of speed and had landed without being wrecked.
Machine Balanced by Warping of Planes
The Wrights found one of the greatest difficulties to be overcome was the balancing of their machine. This was only measurably and unsatisfactorily accomplished by the horizontal rudder. They began to study the flight of soaring birds for a solution of the difficulty. They found that the hawk, the eagle and the gull maintained a horizontal position by a slight, almost imperceptible upward or downward bending of the extreme tips of their wings. They then began experiments with slightly flexible planes that could be bent or warped at will by the pilot. This was one of their most important and original contributions to the problem of aviation, and it gave the pilot in a marked degree control of his machine. The scientific arching of the planes to give them the maximum lifting effect was also the result of their investigations.
They now removed the field of experiment to Hoffman Prairie near Dayton where at first they met with indifferent success. They invited friends and reporters from their home city to witness a flight, but the machine acted badly in the presence of company. While the spectators were not favorably impressed the inventors were in no wise discouraged. Their perseverance was later rewarded in 1904 by a flight of three miles in five minutes and twenty-seven seconds. The year following a flight of 24.20 miles was made in thirty-eight minutes, thirteen seconds, at heights of seventy-five to one hundred feet. These attracted small attention. The inventors fully satisfied with their success and working industriously to perfect their machine were also safeguarding the results of their labors by carefully patenting every device that helped them to the goal of practical aviation. While Europe was applauding the achievements of the intrepid and wealthy Brazilian, Santos-Dumont, who made public flights near Paris, the world was practically unaware of the greater achievements of the Wright brothers a year earlier. Newspaper accounts of their flights were received with a degree of incredulity, but the indifference of the public was favorable to the modest brothers who with tireless energy and slender means triumphed over difficulty after difficulty as they moved toward the larger success that they ardently desired and the fame that they sought not.
Newspaper Reports Verified
In 1907 the United States Government asked for bids for a flying machine that would carry two men, remain in the air an hour and make a cross-country flight of forty miles an hour. The Wright brothers entered into a contract to build such a machine. This fact and rumors of their success that reached the large cities from time to time led a party of newspaper reporters to organize themselves into a spying party to trace the Wrights to their secret retreat and verify the claims made in their behalf or publish the deception to the public. After a long and tedious journey from Norfolk they finally sighted the rude hut of these birdmen. They then secreted themselves until they were rewarded with evidence that the reports were true and promptly announced to the world that these quiet men had actually solved the problem of aerial flight.
Trial Flights at Fort Meyer
In 1908 Orville Wright began trial flights at Fort Meyer preliminary to the tests required by the government contracts. A record flight was made in June. The morning was still and beautiful; the leaves hung motionless on the great plane trees of Washington as Orville Wright and August Post, Secretary of the Aero Club of America left the city about six o’clock and proceeded by way of Georgetown to Fort Meyer where trial flights were to be made with the biplane. It was taken from its shed and placed on the starting rail. The weights were lifted into position, the engine started, the propellers set in rapid motion and all was in readiness for starting. Only a few persons were in sight, including a squad of soldiers who were cleaning the guns of a field battery. Mr. Wright took his place on the machine. At a signal the weights were released, it was drawn forward, and rising gracefully at the end of the rail gradually ascended in a circuitous course upward. Mr. Post kept time and marked circuits on the back of an envelope. Round and round went the machine, rising higher and higher. After a little the spectators realized that a record flight was in progress. Ten-twenty minutes passed. Higher and higher circled the aeroplane. Now it has been aloft on wing for half an hour! The spectators stand rigid and look upward. Mr. Taylor, chief mechanic, in almost breathless interest exclaims, “Don’t make a motion. If you do he’ll come down.”
In the city, word had reached the newspaper reporters that Mr. Wright had gone out for a flight. “Does he intend to fly today?” came the question over the telephone. “Yes, he is in the air now and has been flying for more than half an hour,” was the answer.
Then came the rush for fuller details and the results of the record-making trial were flashed over the country and cabled under the seas to distant lands. Senators, congressmen, departmental officials and representatives of every walk of life in the national capital were a little later on their way to witness another exhibition of the wonderful flying machine. Mr. Wright in the afternoon made another world’s record, remaining in the air an hour and seven minutes. In the evening with Lieutenant Lahm at his side he performed without accident the greatest two-man flight ever made. These achievements awed and thrilled the great throng of spectators who greeted the triumphant conclusion of each with tumultuous cheers. The problem of the centuries had been solved. The “impossible” had been accomplished! The dream of the visionaries had become a reality!
Fatal Accident
On the 17th of September occurred a sad accident that brought to a close for the year the preliminary tests that had been carried on thus far with marked success. When Orville Wright and Lieutenant Selfridge were flying at a height of about seventy-five feet, one of the propellers struck a stray wire which coiled around and broke the blade. This precipitated the machine earthward and fatally injured Lieutenant Selfridge who died three hours afterward. Orville narrowly escaped the same fate with a number of broken bones. Aviation at this time was attended with great dangers and the daring spirits who ventured aloft on the wings of the wind were in constant peril of their lives.
Wilbur Wright Wins Fame in France
Meanwhile Wilbur Wright who had gone to France was making a series of record flights. Early in the month of August near Le Mans he flew fifty-two miles and was in the air one hour and thirty-one minutes. A few days later he broke the previous record for altitude, attaining an elevation of 380 feet. On the 31st day of December he won 20,000 francs for the longest flight of the year. His modest bearing, simple habits and wonderful achievements called forth great praise from the impressionable French. When he took up his quarters at Le Mans he arranged to prepare his own meals as he had previously done on the coast of North Carolina, but the French would not hear to this and furnished him a cook. In speaking of this incident afterward Wilbur Wright said in a jocular way: “Not knowing enough French to dismiss him or find out who sent him, I permitted him to remain.”
In January, 1909, Orville Wright, who had recovered from his injuries, joined his brother at Pau, France. Here they gave many exhibition flights that were witnessed by the great scientists and the nobility of Europe. Here their feats were witnessed by the King of England and the King of Spain who personally extended hearty congratulations. Wilbur took his machine to Rome where King Emanuel attended his exhibition flights. Later the two brothers were the guests, in London, of the Aeronautical Society of Great Britain and received its gold medal. Their bearing and achievements abroad gave them world-wide fame.
Wright Brothers Honored
Arriving in Washington June 10th, they received a medal at the hands of President Taft from the Aero Club of America. Continuing their journey homeward, they were met at Xenia, Ohio, by a delegation from Dayton. They at once began to inquire about their fellow townsmen.
“Look here, Wilbur,” said one of the committee, “you’ll see all those folks at the station in a few moments.”
“Why, who is at the station?” asked Wright.
“Oh, twenty-five or thirty of the boys” was the reply.
As they entered their home city they saw the streets thronged with people.
“I see the twenty-five or thirty,” remarked Mr. Wright, “but I thought you folks knew better than this.”
Later they were honored in their home city with a two-day celebration, at the climax of which medals were presented to them from Congress, from the State of Ohio and from the city of Dayton. Their fame was world-wide and at last their own city had “discovered” them and welcomed them with enthusiastic pride.
United States Government Requirements Successfully Met
Soon afterward they returned to Fort Meyer to continue their work preparatory to the final tests. They had entered into a contract with the United States Government which was to pay $25,000 for a machine which would carry two men one hour in a circuitous course and perform a cross-country flight of ten miles at the rate of forty miles an hour. On the day of the final tests the people of Washington came forth in greater crowds than ever before. Officialdom, including representatives of foreign embassies, army officers, newspaper correspondents and civilians, were present to witness the crucial test. Among the spectators was Miss Katherine Wright, the scholarly sister of the two brothers, who had followed with deep and sympathetic interest every step in the progress of her brothers up to this hour.
At a signal, Orville Wright, with Lieutenant Lahm again at his side started on his time-test flight. Upward in spiral course they rose. At length the hour limit was passed and a mighty cheer from the multitude announced the result. Still the machine with its two passengers remained aloft. Nine minutes more passed. The world’s record made by Wilbur Wright was broken.
Wilbur, who was present, announced the result by waving a handkerchief and calling aloud, “Give him a cheer, boys.” Soon after this the machine gently descended, having been in the air an hour, twelve minutes and forty seconds, the longest two passenger flight that had been made to that date.
Orville Wright was soon overwhelmed with congratulations. Coming forward President Taft said:
“I am glad to congratulate you on your achievement. You came down as gracefully and as much like a bird as you went up. I hope your passenger behaved himself and did not talk to the motorman. It was a wonderful performance. I would not have missed it.”
The President then shook hands with Wilbur, saying, “Your brother has broken your record.”
“Yes,” replied Wilbur, with a smile, “but it’s all in the family.”
On August 30 came the speed trial over a course from Ft. Meyer to Alexandria five miles distant. This at that time was considered the most difficult test of all. The course was over a broken and uneven country, valleys, ravines, hills, forests and open fields alternating. Lieutenant Benjamin D. Foulois was chosen to accompany Orville Wright on this perilous trip. The machine arose and circled between the two flags that marked the starting line, and amid cheers of the spectators started on its flight toward the two captive balloons that marked the limit of the course. Smaller and smaller it grew in the distance as it was swayed slightly out of its path by the wind. It at length turned the goal on the hill at Alexandria. On the return it was borne downward until it disappeared. Would it rise again or would it be swept down by a treacherous current and wrecked in the valley? After a moment’s suspense it again appeared in clearer outline over the treetops. Nearer and nearer it came until in the midst of waving handkerchiefs and thunderous cheers, it softly alighted near its starting place. The daring aviator was heartily congratulated again by the President and other eminent men who thronged about him. His sister told him that the glad news had already been telegraphed to his aged father in Dayton. The machine had successfully met all requirements and had made in the cross-country flight 42.6 miles an hour, entitling the brothers in addition to the $25,000 to a bonus of $5,000, making in all $30,000. Wonderful as was this record at the time, succeeding flights with improved machines now make it seem trivial and commonplace.
Later in the year 1909 Orville Wright went back to Europe where he achieved distinction in a number of nights while Wilbur remained at home to participate in the Hudson-Fulton celebration and thrill his countrymen by encircling in a flight the statue of liberty and returning to his starting point on Governor’s Island.
It is not necessary to follow further the aeronautic achievements of the Wright brothers. While they were the first to construct a successful aeroplane, inventors in America and abroad quickly followed them and machines of various forms and construction but based on the same principle were soon making record flights in many lands. The simultaneous development of the aeroplane in the United States and Europe is explained by the fact that the progress of the experiments of the Wright Brothers was promptly reported and eagerly noted on the other side of the Atlantic. Octave Chanute immediately after his visit to Kitty Hawk made a trip abroad and gave a detailed account of what the Wright brothers had accomplished. This account with drawings was published and European inventors had this information on which to work. In 1909 Louis Bleriot, a French aviator, who had sprung into prominence the preceding year, crossed the English Channel in his beautiful birdlike monoplane. In 1910 George Chauz, flying upward 7,000 feet, crossed the Alps amid the treacherous and frozen winds of the snow-capped peaks only to meet a tragic death as he neared the goal in sunny Italy. Equally daring and dangerous was the trip of the brilliant American aviator Glenn Curtis in his biplane from Albany to New York City, followed a few days later by the notable achievement of Charles K. Hamilton who in a machine of the same make flew from New York City to Philadelphia at the average speed of fifty and one-half miles an hour. Aviation meets and record breaking flights in this country and Europe now followed in such rapid succession that the long list would only weary the reader. In this rapid and spectacular progress that gave man dominion over the air and the power to surpass the eagle’s flight it is interesting to note how well the Wrights kept in the forefront of the era that they ushered in. Frequent changes have greatly improved the efficiency of their machine. In 1910 it made the greatest altitude flight, reaching a height of 11,476 feet. In 1911 C. P. Rodgers, in successive stages, flew in one of their biplanes from New York City to Long Branch, California, a distance of 4,029 miles, the longest flight ever made.
Recent Improvements
Improvements are still in rapid progress. The hydroaeroplane has been invented. This is a slightly modified aeroplane with equipment that will keep it afloat on the water from which it may rise and fly at the will of the pilot. Aviators have developed high skill in the control of their machines in mid-air. They have at high speed described intricate figures, sustained themselves in inverted positions and performed the dangerous and thrilling feat of “looping the loop” in their swift downward flight. They have ascended high in air, reaching an altitude of over 20,000 feet, and increased their speed rate to 126 miles an hour. Swifter than flight of bird and outspeeding the winged tempest, man has cleft the highways of the air. A long line of fatal accidents has marked his progress, but with reckless and audacious courage he has kept his course until he has added the “upper deep” to the realm of his dominion.
Future of the Aeroplane
Future achievements in this new field are of course matters of speculation. Man has flown across the Alps, the Rocky Mountains, the English Channel, the Straits of Florida and the Mediterranean Sea. Even now there is reported a contemplated airship for the crossing of the Atlantic.
Thus far the chief use of the aeroplane has been for sport and armament. The leading nations of the world have equipped their armies with flying machines from which it will be possible at a safe height to spy out the position of the enemy, carry messages across besieging lines and drop destructive explosives in the midst of hostile fortifications. What effect this will have on the future of war can only be conjectured. Some have predicted that when further perfected it will bring to an end this era of vast armaments and defenses by making them useless. If it does this, it may indeed be hailed as the beneficent invention of this new century, for it will have realized the vision of the poet Tennyson who crowned with his immortal verse the century that is gone:
“For I dipt into the future, far as human eye could see,Saw the Vision of the world, and all the wonder that would be;“Saw the heavens fill with commerce, argosies of magic sails,Pilots of the purple twilight, dropping down with costly bales;“Heard the heavens fill with shouting, and there rained a ghastly dewFrom the nations’ airy navies grappling in the central blue;“Far along the world-wide whisper of the south wind rushing warm,With the standards of the peoples plunging through the thunder-storm;“Till the war-drum throbbed no longer, and the battle-flags were furledIn the Parliament of man, the Federation of the world.”