bannerbanner
Geological Observations on South America
Geological Observations on South America

Полная версия

Geological Observations on South America

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
7 из 8

COQUIMBO TO GUASCO.

In this distance of ninety miles, I found in almost every part marine shells up to a height of apparently from two hundred to three hundred feet. The desert plain near Choros is thus covered; it is bounded by the escarpment of a higher plain, consisting of pale-coloured, earthy, calcareous stone, like that of Coquimbo, with the same recent shells embedded in it. In the valley of Chaneral, a similar bed occurs in which, differently from that of Coquimbo, I observed many shells of the Concholepas: near Guasco the same calcareous bed is likewise met with.

In the valley of Guasco, the step-formed terraces of gravel are displaced in a more striking manner than at any other point. I followed the valley for thirty-seven miles (as reckoned by the inhabitants) from the coast to Ballenar; in nearly the whole of this distance, five grand terraces, running at corresponding heights on both sides of the broad valley, are more conspicuous than the three best-developed ones at Coquimbo. They give to the landscape the most singular and formal aspect; and when the clouds hung low, hiding the neighbouring mountains, the valley resembled in the most striking manner that of Santa Cruz. The whole thickness of these terraces or plains seems composed of gravel, rather firmly aggregated together, with occasional parting seams of clay: the pebbles on the upper plain are often whitewashed with an aluminous substance, as in Patagonia. Near the coast I observed many sea-shells on the lower plains. At Freyrina (twelve miles up the valley), there are six terraces beside the bottom- surface of the valley: the two lower ones are here only from two hundred to three hundred yards in width, but higher up the valley they expand into plains; the third terrace is generally narrow; the fourth I saw only in one place, but there it was distinct for the length of a mile; the fifth is very broad; the sixth is the summit-plain, which expands inland into a great basin. Not having a barometer with me, I did not ascertain the height of these plains, but they appeared considerably higher than those at Coquimbo. Their width varies much, sometimes being very broad, and sometimes contracting into mere fringes of separate flat-topped projections, and then quite disappearing: at the one spot, where the fourth terrace was visible, the whole six terraces were cut off for a short space by one single bold escarpment. Near Ballenar (thirty-seven miles from the mouth of the river), the valley between the summit-edges of the highest escarpments is several miles in width, and the five terraces on both sides are broadly developed: the highest cannot be less than six hundred feet above the bed of the river, which itself must, I conceive, be some hundred feet above the sea.

A north and south section across the valley in this part is represented in

Figure 12.

(FIGURE 12. NORTH AND SOUTH SECTION ACROSS THE VALLEY OF GUASCO, AND OF A PLAIN NORTH OF IT.

From left (north, high) to right (south, high) through plains B and A and the River of Guasco at the Town of Ballenar.)

On the northern side of the valley the summit-plain of gravel, A, has two escarpments, one facing the valley, and the other a great basin-like plain, B, which stretches for several leagues northward. This narrow plain, A, with the double escarpment, evidently once formed a spit or promontory of gravel, projecting into and dividing two great bays, and subsequently was worn on both sides into steep cliffs. Whether the several escarpments in this valley were formed during the same stationary periods with those of Coquimbo, I will not pretend to conjecture; but if so the intervening and subsequent elevatory movements must have been here much more energetic, for these plains certainly stand at a much higher level than do those of Coquimbo.

COPIAPO.

From Guasco to Copiapo, I followed the road near the foot of the Cordillera, and therefore saw no upraised remains. At the mouth, however, of the valley of Copiapo there is a plain, estimated by Meyen ("Reise um die Erde" th. 1 s. 372 et seq.) between fifty and seventy feet in height, of which the upper part consists chiefly of gravel, abounding with recent shells, chiefly of the Concholepas, Venus Dombeyi, and Calyptraea trochiformis. A little inland, on a plain estimated by myself at nearly three hundred feet, the upper stratum was formed of broken shells and sand cemented by white calcareous matter, and abounding with embedded recent shells, of which the Mulinia Byronensis and Pecten purpuratus were the most numerous. The lower plain stretches for some miles southward, and for an unknown distance northward, but not far up the valley; its seaward face, according to Meyen, is worn into caves above the level of the present beach. The valley of Copiapo is much less steeply inclined and less direct in its course than any other valley which I saw in Chile; and its bottom does not generally consist of gravel: there are no step-formed terraces in it, except at one spot near the mouth of the great lateral valley of the Despoblado where there are only two, one above the other: lower down the valley, in one place I observed that the solid rock had been cut into the shape of a beach, and was smoothed over with shingle.

Northward of Copiapo, in latitude 26 degrees S., the old voyager Wafer found immense numbers of sea-shells some miles from the coast. (Burnett's "Collection of Voyages" volume 4 page 193.) At Cobija (latitude 22 degrees 34') M. d'Orbigny observed beds of gravel and broken shells, containing ten species of recent shells; he also found, on projecting points of porphyry, at a height of 300 feet, shells of Concholepas, Chiton, Calyptraea, Fissurella, and Patella, still attached to the spots on which they had lived. M. d'Orbigny argues from this fact, that the elevation must have been great and sudden ("Voyage, Part Geolog." page 94. M. d'Orbigny (page 98), in summing up, says: "S'il est certain (as he believes) que tous les terrains en pente, compris entre la mer et les montagnes sont l'ancien rivage de la mer, on doit supposer, pour l'ensemble, un exhaussement que ce ne serait pas moindre de deux cent metres; il faudrait supposer encore que ce soulevement n'a point ete graduel;…mais qu'il resulterait d'une seule et meme cause fortuite," etc. Now, on this view, when the sea was forming the beach at the foot of the mountains, many shells of Concholepas, Chiton, Calyptraea, Fissurella, and Patella (which are known to live close to the beach), were attached to rocks at a depth of 300 feet, and at a depth of 600 feet several of these same shells were accumulating in great numbers in horizontal beds. From what I have myself seen in dredging, I believe this to be improbable in the highest degree, if not impossible; and I think everyone who has read Professor E. Forbes's excellent researches on the subject, will without hesitation agree in this conclusion.): to me it appears far more probable that the movement was gradual, with small starts as during the earthquakes of 1822 and 1835, by which whole beds of shells attached to the rocks were lifted above the subsequent reach of the waves. M. d'Orbigny also found rolled pebbles extending up the mountain to a height of at least six hundred feet. At Iquique (latitude 20 degrees 12' S.), in a great accumulation of sand, at a height estimated between one hundred and fifty and two hundred feet, I observed many large sea-shells which I thought could not have been blown up by the wind to that height. Mr. J.H. Blake has lately described these shells: he states that "inland toward the mountains they form a compact uniform bed, scarcely a trace of the original shells being discernible; but as we approach the shore, the forms become gradually more distinct till we meet with the living shells on the coast." ("Silliman's American Journal of Science" volume 44 page 2.) This interesting observation, showing by the gradual decay of the shells how slowly and gradually the coast must have been uplifted, we shall presently see fully confirmed at Lima. At Arica (latitude 18 degrees 28'), M. d'Orbigny found a great range of sand-dunes, fourteen leagues in length, stretching towards Tacna, including recent shells and bones of Cetacea, and reaching up to a height of 300 feet above the sea. ("Voyage" etc. page 101.) Lieutenant Freyer has given some more precise facts: he states (In a letter to Mr. Lyell "Geological Proceedings" volume 2 page 179.) that the Morro of Arica is about four hundred feet high; it is worn into obscure terraces, on the bare rock of which he found Balini and Milleporae adhering. At the height of between twenty and thirty feet the shells and corals were in a quite fresh state, but at fifty feet they were much abraded; there were, however, traces of organic remains at greater heights. On the road from Tacna to Arequipa, between Loquimbo and Moquegua, Mr. M. Hamilton found numerous recent sea shells in sand, at a considerable distance from the sea. ("Edinburgh New Philosophical Journal" volume 30 page 155.)

LIMA.

Northward of Arica, I know nothing of the coast for about a space of five degrees of latitude; but near Callao, the port of Lima, there is abundant and very curious evidence of the elevation of the land. The island of San Lorenzo is upwards of one thousand feet high; the basset edges of the strata composing the lower part are worn into three obscure, narrow, sloping steps or ledges, which can be seen only when standing on them: they probably resemble those described by Lieutenant Freyer at Arica. The surface of the lower ledge, which extends from a low cliff overhanging the sea to the foot of the next upper escarpment, is covered by an enormous accumulation of recent shells. (M. Chevalier, in the "Voyage of the 'Bonite'" observed these shells; but his specimens were lost. – "L'Institut" 1838 page 151.) The bed is level, and in some parts more than two feet in thickness; I traced it over a space of one mile in length, and heard of it in other places: the uppermost part is eighty-five feet by the barometer above high-water mark. The shells are packed together, but not stratified: they are mingled with earth and stones, and are generally covered by a few inches of detritus; they rest on a mass of nearly angular fragments of the underlying sandstone, sometimes cemented together by common salt. I collected eighteen species of shells of all ages and sizes. Several of the univalves had evidently long lain dead at the bottom of the sea, for their INSIDES were incrusted with Balani and Serpulae. All, according to Mr. G.B. Sowerby, are recent species: they consist of: —

1. Mytilus Magellanicus: same as that found at Valparaiso, and there stated to be probably distinct from the true M. Magellanicus of the east coast.

2. Venus costellata, Sowerby "Zoological Proceedings."

3. Pecten purpuratus, Lam.

4. Chama, probably echinulata, Brod.

5. Calyptraea Byronensis, Gray.

6. Calyptraea radians (Trochus, Lam.)

7. Fissurella affinis, Gray.

8. Fissurella biradiata, Trembly.

9. Purpura chocolatta, Duclos.

10. Purpura Peruviana, Gray.

11. Purpura labiata, Gray.

12. Purpura buxea (Murex, Brod.).

13. Concholepas Peruviana.

14. Nassa, related to reticulata.

15. Triton rudis, Brod.

16. Trochus, not yet described, but well-known and very common.

17 and 18. Balanus, two species, both common on the coast.

These upraised shells appear to be nearly in the same proportional numbers-with the exception of the Crepidulae being more numerous – with those on the existing beach. The state of preservation of the different species differed much; but most of them were much corroded, brittle, and bleached: the upper and lower surfaces of the Concholepas had generally quite scaled off: some of the Trochi and Fissurellae still partially retain their colours. It is remarkable that these shells, taken all together, have fully as ancient an appearance, although the extremely arid climate appears highly favourable for their preservation, as those from 1,300 feet at Valparaiso, and certainly a more ancient appearance than those from five to six hundred feet from Valparaiso and Concepcion; at which places I have seen grass and other vegetables actually growing out of the shells. Many of the univalves here at San Lorenzo were filled with, and united together by, pure salt, probably left by the evaporation of the sea-spray, as the land slowly emerged. (The underlying sandstone contains true layers of salt; so that the salt may possibly have come from the beds in the higher parts of the island; but I think more probably from the sea-spray. It is generally asserted that rain never falls on the coast of Peru; but this is not quite accurate; for, on several days, during our visit, the so-called Peruvian dew fell in sufficient quantity to make the streets muddy, and it would certainly have washed so deliquescent a substance as salt into the soil. I state this because M. d'Orbigny, in discussing an analogous subject, supposes that I had forgotten that it never rains on this whole line of coast. See Ulloa's "Voyage" volume 2 English Translation page 67 for an account of the muddy streets of Lima, and on the continuance of the mists during the whole winter. Rain, also, falls at rare intervals even in the driest districts, as, for instance, during forty days, in 1726, at Chocope (7 degrees 46'); this rain entirely ruined ("Ulloa" etc. page 18) the mud houses of the inhabitants.) On the highest parts of the ledge, small fragments of the shells were mingled with, and evidently in process of reduction into, a yellowish-white, soft, calcareous powder, tasting strongly of salt, and in some places as fine as prepared medicinal chalk.

FOSSIL-REMAINS OF HUMAN ART.

In the midst of these shells on San Lorenzo, I found light corallines, the horny ovule-cases of Mollusca, roots of seaweed (Mr. Smith of Jordan Hill found pieces of seaweed in an upraised pleistocene deposit in Scotland. See his admirable Paper in the "Edinburgh New Philosophical Journal" volume 25 page 384.), bones of birds, the heads of Indian corn and other vegetable matter, a piece of woven rushes, and another of nearly decayed COTTON string. I extracted these remains by digging a hole, on a level spot; and they had all indisputably been embedded with the shells. I compared the plaited rush, the COTTON string, and Indian corn, at the house of an antiquary, with similar objects, taken from the Huacas or burial-grounds of the ancient Peruvians, and they were undistinguishable; it should be observed that the Peruvians used string only of cotton. The small quantity of sand or gravel with the shells, the absence of large stones, the width and thickness of the bed, and the time requisite for a ledge to be cut into the sandstone, all show that these remains were not thrown high up by an earthquake-wave: on the other hand, these facts, together with the number of dead shells, and of floating objects, both marine and terrestrial, both natural and human, render it almost certain that they were accumulated on a true beach, since upraised eighty-five feet, and upraised this much since INDIAN MAN INHABITED PERU. The elevation may have been, either by several small sudden starts, or quite gradual; in this latter case the unrolled shells having been thrown up during gales beyond the reach of the waves which afterwards broke on the slowly emerging land. I have made these remarks, chiefly because I was at first surprised at the complete difference in nature, between this broad, smooth, upraised bed of shells, and the present shingle-beach at the foot of the low sandstone-cliffs; but a beach formed, when the sea is cutting into the land, as is shown now to be the case by the low bare sandstone-cliffs, ought not to be compared with a beach accumulated on a gently inclined rocky surface, at a period when the sea (probably owing to the elevatory movement in process) was not able to eat into the land. With respect to the mass of nearly angular, salt- cemented fragments of sandstone, which lie under the shells, and which are so unlike the materials of an ordinary sea-beach; I think it probable after having seen the remarkable effects of the earthquake of 1835 (I have described this in my "Journal of Researches" page 303 2nd edition.), in absolutely shattering as if by gunpowder the SURFACE of the primary rocks near Concepcion, that a smooth bare surface of stone was left by the sea covered by the shelly mass, and that afterwards when upraised, it was superficially shattered by the severe shocks so often experienced here.

The very low land surrounding the town of Callao, is to the south joined by an obscure escarpment to a higher plain (south of Bella Vista), which stretches along the coast for a length of about eight miles. This plain appears to the eye quite level; but the sea-cliffs show that its height varies (as far as I could estimate) from seventy to one hundred and twenty feet. It is composed of thin, sometimes waving, beds of clay, often of bright red and yellow colours, of layers of impure sand, and in one part with a great stratified mass of granitic pebbles. These beds are capped by a remarkable mass, varying from two to six feet in thickness, of reddish loam or mud, containing many scattered and broken fragments of recent marine shells, sometimes though rarely single large round pebble, more frequently short irregular layers of fine gravel, and very many pieces of red coarse earthenware, which from their curvatures must once have formed parts of large vessels. The earthenware is of Indian manufacture; and I found exactly similar pieces accidentally included within the bricks, of which the neighbouring ancient Peruvian burial-mounds are built. These fragments abounded in such numbers in certain spots, that it appeared as if waggon-loads of earthenware had been smashed to pieces. The broken sea- shells and pottery are strewed both on the surface, and throughout the whole thickness of this upper loamy mass. I found them wherever I examined the cliffs, for a space of between two and three miles, and for half a mile inland; and there can be little doubt that this same bed extends with a smooth surface several miles further over the entire plain. Besides the little included irregular layers of small pebbles, there are occasionally very obscure traces of stratification.

At one of the highest parts of the cliff, estimated 120 feet above the sea, where a little ravine came down, there were two sections, at right angles to each other, of the floor of a shed or building. In both sections or faces, two rows, one over the other, of large round stones could be distinctly seen; they were packed close together on an artificial layer of sand two inches thick, which had been placed on the natural clay-beds; the round stones were covered by three feet in thickness of the loam with broken sea-shells and pottery. Hence, before this widely spread-out bed of loam was deposited, it is certain that the plain was inhabited; and it is probable, from the broken vessels being so much more abundant in certain spots than in others, and from the underlying clay being fitted for their manufacture, that the kilns stood here.

The smoothness and wide extent of the plain, the bulk of matter deposited, and the obscure traces of stratification seem to indicate that the loam was deposited under water; on the other hand, the presence of sea-shells, their broken state, the pebbles of various sizes, and the artificial floor of round stones, almost prove that it must have originated in a rush of water from the sea over the land. The height of the plain, namely, 120 feet, renders it improbable that an earthquake-wave, vast as some have here been, could have broken over the surface at its present level; but when the land stood eighty-five feet lower, at the period when the shells were thrown up on the ledge at S. Lorenzo, and when as we know man inhabited this district, such an event might well have occurred; and if we may further suppose, that the plain was at that time converted into a temporary lake, as actually occurred, during the earthquakes of 1713 and 1746, in the case of the low land round Callao owing to its being encircled by a high shingle-beach, all the appearances above described will be perfectly explained. I must add, that at a lower level near the point where the present low land round Callao joins the higher plain, there are appearances of two distinct deposits both apparently formed by debacles: in the upper one, a horse's tooth and a dog's jaw were embedded; so that both must have been formed after the settlement of the Spaniards: according to Acosta, the earthquake-wave of 1586 rose eighty-four feet.

The inhabitants of Callao do not believe, as far as I could ascertain, that any change in level is now in progress. The great fragments of brickwork, which it is asserted can be seen at the bottom of the sea, and which have been adduced as a proof of a late subsidence, are, as I am informed by Mr. Gill, a resident engineer, loose fragments; this is probable, for I found on the beach, and not near the remains of any building, masses of brickwork, three and four feet square, which had been washed into their present places, and smoothed over with shingle during the earthquake of 1746. The spit of land, on which the ruins of OLD Callao stand, is so extremely low and narrow, that it is improbable in the highest degree that a town should have been founded on it in its present state; and I have lately heard that M. Tschudi has come to the conclusion, from a comparison of old with modern charts, that the coast both south and north of Callao has subsided. (I am indebted for this fact to Dr. E. Dieffenbach. I may add that there is a tradition, that the islands of San Lorenzo and Fronton were once joined, and that the channel between San Lorenzo and the mainland, now above two miles in width, was so narrow that cattle used to swim over.) I have shown that the island of San Lorenzo has been upraised eighty-five feet since the Peruvians inhabited this country; and whatever may have been the amount of recent subsidence, by so much more must the elevation have exceeded the eighty-five feet. In several places in this neighbourhood, marks of sea-action have been observed: Ulloa gives a detailed account of such appearances at a point five leagues northward of Callao: Mr. Cruikshank found near Lima successive lines of sea-cliffs, with rounded blocks at their bases, at a height of 700 feet above the present level of the sea. ("Observaciones sobre el Clima del Lima" par Dr. H. Unanue page 4. – Ulloa's "Voyage" volume 2 English Translation page 97. – For Mr. Cruikshank's observations, see Mr. Lyell's "Principles of Geology" 1st edition volume 3 page 130.) ON THE DECAY OF UPRAISED SEA-SHELLS.

I have stated that many of the shells on the lower inclined ledge or terrace of San Lorenzo are corroded in a peculiar manner, and that they have a much more ancient appearance than the same species at considerably greater heights on the coast of Chile. I have, also, stated that these shells in the upper part of the ledge, at the height of eighty-five feet above the sea, are falling, and in some parts are quite changed into a fine, soft, saline, calcareous powder. The finest part of this powder has been analysed for me, at the request of Sir H. De la Beche, by the kindness of Mr. Trenham Reeks of the Museum of Economic Geology; it consists of carbonate of lime in abundance, of sulphate and muriate of lime, and of muriate and sulphate of soda. The carbonate of lime is obviously derived from the shells; and common salt is so abundant in parts of the bed, that, as before remarked, the univalves are often filled with it. The sulphate of lime may have been derived, as has probably the common salt, from the evaporation of the sea-spray, during the emergence of the land; for sulphate of lime is now copiously deposited from the spray on the shores of Ascension. (See "Volcanic Islands" etc. by the Author.) The other saline bodies may perhaps have been partially thus derived, but chiefly, as I conclude from the following facts, through a different means.

On most parts of the second ledge or old sea-beach, at a height of 170 feet, there is a layer of white powder of variable thickness, as much in some parts as two inches, lying on the angular, salt-cemented fragments of sandstone and under about four inches of earth, which powder, from its close resemblance in nature to the upper and most decayed parts of the shelly mass, I can hardly doubt originally existed as a bed of shells, now much collapsed and quite disintegrated. I could not discover with the microscope a trace of organic structure in it; but its chemical constituents, according to Mr. Reeks, are the same as in the powder extracted from amongst the decaying shells on the lower ledge, with the marked exception that the carbonate of lime is present in only very small quantity. On the third and highest ledge, I observed some of this powder in a similar position, and likewise occasionally in small patches at considerably greater heights near the summit of the island. At Iquique, where the whole face of the country is covered by a highly saliferous alluvium, and where the climate is extremely dry, we have seen that, according to Mr. Blake, the shells which are perfect near the beach become, in ascending, gradually less and less perfect, until scarcely a trace of their original structure can be discovered. It is known that carbonate of lime and common salt left in a mass together, and slightly moistened, partially decompose each other (I am informed by Dr. Kane, through Mr. Reeks, that a manufactory was established on this principle in France, but failed from the small quantity of carbonate of soda produced. Sprengel "Gardeners' Chronicle" 1845 page 157, states, that salt and carbonate of lime are liable to mutual decomposition in the soil. Sir H. De la Beche informs me, that calcareous rocks washed by the spray of the sea, are often corroded in a peculiar manner; see also on this latter subject "Gardeners' Chronicle" page 675 1844.): now we have at San Lorenzo and at Iquique, in the shells and salt packed together, and occasionally moistened by the so- called Peruvian dew, the proper elements for this action. We can thus understand the peculiar corroded appearance of the shells on San Lorenzo, and the great decrease of quantity in the carbonate of lime in the powder on the upper ledge. There is, however, a great difficulty on this view, for the resultant salts should be carbonate of soda and muriate of lime; the latter is present, but not the carbonate of soda. Hence I am led to the perhaps unauthorised conjecture (which I shall hereafter have to refer to) that the carbonate of soda, by some unexplained means, becomes converted into a sulphate.

На страницу:
7 из 8