bannerbanner
Geological Observations on South America
Geological Observations on South Americaполная версия

Полная версия

Geological Observations on South America

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
26 из 32

Ninthly: indurated tuffs, as before.

Tenthly: a conformable layer, less than two feet in thickness, of pitchstone, generally brecciated, and traversed by veins of agate and of carbonate of lime: parts are composed of apparently concretionary fragments of a more perfect variety, arranged in horizontal lines in a less perfectly characterised variety. I have much difficulty in believing that this thin layer of pitchstone flowed as lava.

Eleventhly: sedimentary and tufaceous beds as before, passing into sandstone, including some conglomerate: the pebbles in the latter are of claystone porphyry, well rounded, and some as large as cricket-balls.

Twelfthly: a bed of compact, sonorous, feldspathic lava, like that of bed

No. 8, divided by numerous joints into large angular blocks.

Thirteenthly: sedimentary beds as before.

Fourteenthly: a thick bed of greenish or greyish black, compact basalt (fusing into a black enamel), with small crystals, occasionally distinguishable, of feldspar and augite: the junction with the underlying sedimentary bed, differently from that in most of the foregoing streams, here was quite distinct: – the lava and tufaceous matter preserving their perfect characters within two inches of each other. This rock closely resembles certain parts of that varied and singular lava-stream No. 6; it likewise resembles, as we shall immediately see, many of the great upper beds on the western flank and on the summit of this range.

The pile of strata here described attains a great thickness; and above the last-mentioned volcanic stratum, there were several other great tufaceous beds alternating with submarine lavas, which I had not time to examine; but a corresponding series, several thousand feet in thickness, is well exhibited on the crest and western flank of the range. Most of the lava- streams on the western side are of a jet-black colour and basaltic nature; they are either compact and fine-grained, including minute crystals of augite and feldspar, or they are coarse-grained and abound with rather large coppery-brown crystals of an augitic mineral. (Very easily fusible into a jet-black bead, attracted by the magnet: the crystals are too much tarnished to be measured by the goniometer.) Another variety was of a dull- red colour, having a claystone brecciated basis, including specks of oxide of iron and of calcareous spar, and amygdaloidal with green earth: there were apparently several other varieties. These submarine lavas often exhibit a spheroidal, and sometimes an imperfect columnar structure: their upper junctions are much more clearly defined than their lower junctions; but the latter are not so much blended into the underlying sedimentary beds as is the case in the eastern flank. On the crest and western flank of the range, the streams, viewed as a whole, are mostly basaltic; whilst those on the eastern side, which stand lower in the series, are, as we have seen, mostly feldspathic.

The sedimentary strata alternating with the lavas on the crest and western side, are of an almost infinitely varying nature; but a large proportion of them closely resemble those already described on the eastern flank: there are white and brown, indurated, easily fusible tuffs, – some passing into pale blue and green semi-porcellanic rocks, – others into brownish and purplish sandstones and gritstones, often including grains of quartz, – others into mudstone containing broken crystals and particles of rock, and occasionally single large pebbles. There was one stratum of a bright red, coarse, volcanic gritstone; another of conglomerate; another of a black, indurated, carbonaceous shale marked with imperfect vegetable impressions; this latter bed, which was thin, rested on a submarine lava, and followed all the considerable inequalities of its upper surface. Mr. Miers states that coal has been found in this range. Lastly, there was a bed (like No. 10 on the eastern flank) evidently of sedimentary origin, and remarkable from closely approaching in character to an imperfect pitchstone, and from including extremely thin layers of perfect pitchstone, as well as nodules and irregular fragments (but not resembling extraneous fragments) of this same rock arranged in horizontal lines: I conceive that this bed, which is only a few feet in thickness, must have assumed its present state through metamorphic and concretionary action. Most of these sedimentary strata are much indurated, and no doubt have been partially metamorphosed: many of them are extraordinarily heavy and compact; others have agate and crystalline carbonate of lime disseminated throughout them. Some of the beds exhibit a singular concretionary arrangement, with the curves determined by the lines of fissure. There are many veins of agate and calcareous spar, and innumerable ones of iron and other metals, which have blackened and curiously affected the strata to considerable distances on both sides.

Many of these tufaceous beds resemble, with the exception of being more indurated, the upper beds of the Great Patagonian tertiary formation, especially those variously coloured layers high up the River Santa Cruz, and in a remarkable degree the tufaceous formation at the northern end of Chiloe. I was so much struck with this resemblance, that I particularly looked out for silicified wood, and found it under the following extraordinary circumstances. High up on this western flank, at a height estimated at 7,000 feet above the sea, in a broken escarpment of thin strata, composed of compact green gritstone passing into a fine mudstone, and alternating with layers of coarser, brownish, very heavy mudstone, including broken crystals and particles of rock almost blended together, I counted the stumps of fifty-two trees. (For the information of any future traveller, I will describe the spot in detail. Proceeding eastward from the Agua del Zorro, and afterwards leaving on the north side of the road a rancho attached to some old goldmines, you pass through a gully with low but steep rocks on each hand: the road then bends, and the ascent becomes steeper. A few hundred yards farther on, a stone's throw on the south side of the road, the white calcareous stumps may be seen. The spot is about half a mile east of the Agua del Zorro.) They projected between two and five feet above the ground, and stood at exactly right angles to the strata, which were here inclined at an angle of about 25 degrees to the west. Eleven of these trees were silicified and well preserved; Mr. R. Brown has been so kind as to examine the wood when sliced and polished; he says it is coniferous, partaking of the characters of the Araucarian tribe, with some curious points of affinity with the Yew. The bark round the trunks must have been circularly furrowed with irregular lines, for the mudstone round them is thus plainly marked. One cast consisted of dark argillaceous limestone; and forty of them of coarsely crystallised carbonate of lime, with cavities lined by quartz crystals: these latter white calcareous columns do not retain any internal structure, but their external form plainly shows their origin. All the stumps have nearly the same diameter, varying from one foot to eighteen inches; some of them stand within a yard of each other; they are grouped in a clump within a space of about sixty yards across, with a few scattered round at the distance of 150 yards. They all stand at about the same level. The longest stump stood seven feet out of the ground: the roots, if they are still preserved, are buried and concealed. No one layer of the mudstone appeared much darker than the others, as if it had formerly existed as soil, nor could this be expected, for the same agents which replaced with silex and lime the wood of the trees, would naturally have removed all vegetable matter from the soil. Besides the fifty-two upright trees, there were a few fragments, like broken branches, horizontally embedded. The surrounding strata are crossed by veins of carbonate of lime, agate, and oxide of iron; and a poor gold vein has been worked not far from the trees.

The green and brown mudstone beds including the trees, are conformably covered by much indurated, compact, white or ferruginous tuffs, which pass upwards into a fine-grained, purplish sedimentary rock: these strata, which, together, are from four to five hundred feet in thickness, rest on a thick bed of submarine lava, and are conformably covered by another great mass of fine-grained basalt, which I estimated at 1,000 feet in thickness, and which probably has been formed by more than one stream. (This rock is quite black, and fuses into a black bead, attracted strongly by the magnet; it breaks with a conchoidal fracture; the included crystals of augite are distinguishable by the naked eye, but are not perfect enough to be measured: there are many minute acicular crystals of glassy feldspar.) Above this mass I could clearly distinguish five conformable alternations, each several hundred feet in thickness, of stratified sedimentary rocks and lavas, such as have been previously described. Certainly the upright trees have been buried under several thousand feet in thickness of matter, accumulated under the sea. As the trees obviously must once have grown on dry land, what an enormous amount of subsidence is thus indicated! Nevertheless, had it not been for the trees there was no appearance which would have led any one even to have conjectured that these strata had subsided. As the land, moreover, on which the trees grew, is formed of subaqueous deposits, of nearly if not quite equal thickness with the superincumbent strata, and as these deposits are regularly stratified and fine-grained, not like the matter thrown up on a sea-beach, a previous upward movement, aided no doubt by the great accumulation of lavas and sediment, is also indicated. (At first I imagined, that the strata with the trees might have been accumulated in a lake: but this seems highly improbable; for, first, a very deep lake was necessary to receive the matter below the trees, then it must have been drained for their growth, and afterwards re-formed and made profoundly deep, so as to receive a subsequent accumulation of matter SEVERAL THOUSAND feet in thickness. And all this must have taken place necessarily before the formation of the Uspallata range, and therefore on the margin of the wide level expanse of the Pampas! Hence I conclude, that it is infinitely more probable that the strata were accumulated under the sea: the vast amount of denudation, moreover, which this range has suffered, as shown by the wide valleys, by the exposure of the very trees and by other appearances, could have been effected, I conceive, only by the long-continued action of the sea; and this shows that the range was either upheaved from under the sea, or subsequently let down into it. From the natural manner in which the stumps (fifty-two in number) are GROUPED IN A CLUMP, and from their all standing vertically to the strata, it is superfluous to speculate on the chance of the trees having been drifted from adjoining land, and deposited upright: I may, however, mention that the late Dr. Malcolmson assured me, that he once met in the Indian Ocean, fifty miles from land, several cocoa-nut trees floating upright, owing to their roots being loaded with earth.)

In nearly the middle of the range, there are some hills [Q], before alluded to, formed of a kind of granite externally resembling andesite, and consisting of a white, imperfectly granular, feldspathic basis, including some perfect crystals apparently of albite (but I was unable to measure them), much black mica, epidote in veins, and very little or no quartz. Numerous small veins branch from this rock into the surrounding strata; and it is a singular fact that these veins, though composed of the same kind of feldspar and small scales of mica as in the solid rock, abound with innumerable minute ROUNDED grains of quartz: in the veins or dikes also, branching from the great granitic axis in the peninsula of Tres Montes, I observed that quartz was more abundant in them than in the main rock: I have heard of other analogous cases: can we account for this fact, by the long-continued vicinity of quartz when cooling, and by its having been thus more easily sucked into fissures than the other constituent minerals of granite? (See a paper by M. Elie de Beaumont, "Soc. Philomath." May 1839 "L'Institut." 1839 page 161.) The strata encasing the flanks of these granitic or andesite masses, and forming a thick cap on one of their summits, appear originally to have been of the same tufaceous nature with the beds already described, but they are now changed into porcellanic, jaspery, and crystalline rocks, and into others of a white colour with a harsh texture, and having a siliceous aspect, though really of a feldspathic nature and fusible. Both the granitic intrusive masses and the encasing strata are penetrated by innumerable metallic veins, mostly ferruginous and auriferous, but some containing copper-pyrites and a few silver: near the veins, the rocks are blackened as if blasted by gunpowder. The strata are only slightly dislocated close round these hills, and hence, perhaps, it may be inferred that the granitic masses form only the projecting points of a broad continuous axis-dome, which has given to the upper parts of this range its anticlinal structure.

CONCLUDING REMARKS ON THE USPALLATA RANGE.

I will not attempt to estimate the total thickness of the pile of strata forming this range, but it must amount to many thousand feet. The sedimentary and tufaceous beds have throughout a general similarity, though with infinite variations. The submarine lavas in the lower part of the series are mostly feldspathic, whilst in the upper part, on the summit and western flank, they are mostly basaltic. We are thus reminded of the relative position in most recent volcanic districts of the trachytic and basaltic lavas, – the latter from their greater weight having sunk to a lower level in the earth's crust, and having consequently been erupted at a later period over the lighter and upper lavas of the trachytic series. (See on this subject, "Volcanic Islands" etc. by the Author.) Both the basaltic and feldspathic submarine streams are very compact; none being vesicular, and only a few amygdaloidal: the effects which some of them, especially those low in the series, have produced on the tufaceous beds over which they have flowed is highly curious. Independently of this local metamorphic action, all the strata undoubtedly display an indurated and altered character; and all the rocks of this range – the lavas, the alternating sediments, the intrusive granite and porphyries, and the underlying clay- slate – are intersected by metalliferous veins. The lava-strata can often be seen extending for great distances, conformably with the under and overlying beds; and it was obvious that they thickened towards the west. Hence the points of eruption must have been situated westward of the present range, in the direction of the main Cordillera: as, however, the flanks of the Cordillera are entirely composed of various porphyries, chiefly claystone and greenstone, some intrusive, and others belonging to the porphyritic conglomerate formation, but all quite unlike these submarine lava-streams, we must in all probability look to the plain of Uspallata for the now deeply buried points of eruption.

Comparing our section of the Uspallata range with that of the Cumbre, we see, with the exception of the underlying clay-slate, and perhaps of the intrusive rocks of the axes, a striking dissimilarity in the strata composing them. The great porphyritic conglomerate formation has not extended as far as this range; nor have we here any of the gypseous strata, the magnesian and other limestones, the red sandstones, the siliceous beds with pebbles of quartz, and comparatively little of the conglomerates, all of which form such vast masses over the basal series in the main Cordillera. On the other hand, in the Cordillera, we do not find those endless varieties of indurated tuffs, with their numerous veins and concretionary arrangement, and those grit and mud stones, and singular semi-porcellanic rocks, so abundant in the Uspallata range. The submarine lavas, also, differ considerably; the feldspathic streams of the Cordillera contain much mica, which is absent in those of the Uspallata range: in this latter range we have seen on how grand a scale, basaltic lava has been poured forth, of which there is not a trace in the Cordillera. This dissimilarity is the more striking, considering that these two parallel chains are separated by a plain only between ten and fifteen miles in width; and that the Uspallata lavas, as well as no doubt the alternating tufaceous beds, have proceeded from the west, from points apparently between the two ranges. To imagine that these two piles of strata were contemporaneously deposited in two closely adjoining, very deep, submarine areas, separated from each other by a lofty ridge, where a plain now extends, would be a gratuitous hypothesis. And had they been contemporaneously deposited, without any such dividing ridge, surely some of the gypseous and other sedimentary matter forming such immensely thick masses in the Cordillera, would have extended this short distance eastwards; and surely some of the Uspallata tuffs and basalts also accumulated to so great a thickness, would have extended a little westward. Hence I conclude, that it is far from probable that these two series are not contemporaneous; but that the strata of one of the chains were deposited, and even the chain itself uplifted, before the formation of the other: – which chain, then, is the oldest? Considering that in the Uspallata range the lowest strata on the western flank lie unconformably on the clay- slate, as probably is the case with those on the eastern flank, whereas in the Cordillera all the overlying strata lie conformably on this formation: – considering that in the Uspallata range some of the beds, both low down and high up in the series, are marked with vegetable impressions, showing the continued existence of neighbouring land; – considering the close general resemblance between the deposits of this range and those of tertiary origin in several parts of the continent; – and lastly, even considering the lesser height and outlying position of the Uspallata range, – I conclude that the strata composing it are in all probability of subsequent origin, and that they were accumulated at a period when a deep sea studded with submarine volcanoes washed the eastern base of the already partially elevated Cordillera.

This conclusion is of much importance, for we have seen that in the Cordillera, during the deposition of the Neocomian strata, the bed of the sea must have subsided many thousand feet: we now learn that at a later period an adjoining area first received a great accumulation of strata, and was upheaved into land on which coniferous trees grew, and that this area then subsided several thousand feet to receive the superincumbent submarine strata, afterwards being broken up, denuded, and elevated in mass to its present height. I am strengthened in this conclusion of there having been two distinct, great periods of subsidence, by reflecting on the thick mass of coarse stratified conglomerate in the valley of Tenuyan, between the Peuquenes and Portillo lines; for the accumulation of this mass seems to me, as previously remarked, almost necessarily to have required a prolonged subsidence; and this subsidence, from the pebbles in the conglomerate having been to a great extent derived from the gypseous or Neocomian strata of the Peuquenes line, we know must have been quite distinct from, and subsequent to, that sinking movement which probably accompanied the deposition of the Peuquenes strata, and which certainly accompanied the deposition of the equivalent beds near the Puente del Inca, in this line of section.

The Uspallata chain corresponds in geographical position, though on a small scale, with the Portillo line; and its clay-slate formation is probably the equivalent of the mica-schist of the Portillo, there metamorphosed by the old white granites and syenites. The coloured beds under the conglomerate in the valley of Tenuyan, of which traces are seen on the crest of the Portillo, and even the conglomerate itself, may perhaps be synchronous with the tufaceous beds and submarine lavas of the Uspallata range; an open sea and volcanic action in the latter case, and a confined channel between two bordering chains of islets in the former case, having been sufficient to account for the mineralogical dissimilarity of the two series. From this correspondence between the Uspallata and Portillo ranges, perhaps in age and certainly in geographical position, one is tempted to consider the one range as the prolongation of the other; but their axes are formed of totally different intrusive rocks; and we have traced the apparent continuation of the red granite of the Portillo in the red porphyries diverging into the main Cordillera. Whether the axis of the Uspallata range was injected before, or as perhaps is more probable, after that of the Portillo line, I will not pretend to decide; but it is well to remember that the highly inclined lava-streams on the eastern flank of the Portillo line, prove that its angular upheavement was not a single and sudden event; and therefore that the anticlinal elevation of the Uspallata range may have been contemporaneous with some of the later angular movements by which the gigantic Portillo range gained its present height above the adjoining plain.

CHAPTER VIII. NORTHERN CHILE. CONCLUSION

Section from Illapel to Combarbala; gypseous formation with silicified wood. Panuncillo. Coquimbo; mines of Arqueros; section up valley; fossils. Guasco, fossils of. Copiapo, section up valley; Las Amolanas, silicified wood. Conglomerates, nature of former land, fossils, thickness of strata, great subsidence. Valley of Despoblado, fossils, tufaceous deposit, complicated dislocations of. Relations between ancient orifices of eruption and subsequent axes of injection. Iquique, Peru, fossils of, salt-deposits. Metalliferous veins. Summary on the porphyritic conglomerate and gypseous formations. Great subsidence with partial elevations during the cretaceo-oolitic period. On the elevation and structure of the Cordillera. Recapitulation on the tertiary series. Relation between movements of subsidence and volcanic action. Pampean formation. Recent elevatory movements. Long-continued volcanic action in the Cordillera. Conclusion.

VALPARAISO TO COQUIMBO.

I have already described the general nature of the rocks in the low country north of Valparaiso, consisting of granites, syenites, greenstones, and altered feldspathic clay-slate. Near Coquimbo there is much hornblendic rock and various dusky-coloured porphyries. I will describe only one section in this district, namely, from near Illapel in a N.E. line to the mines of Los Hornos, and thence in a north by east direction to Combarbala, at the foot of the main Cordillera.

Near Illapel, after passing for some distance over granite, andesite, and andesitic porphyry, we come to a greenish stratified feldspathic rock, which I believe is altered clay-slate, conformably capped by porphyries and porphyritic conglomerate of great thickness, dipping at an average angle of 20 degrees to N.E. by N. The uppermost beds consist of conglomerates and sandstone only a little metamorphosed, and conformably covered by a gypseous formation of very great thickness, but much denuded. This gypseous formation, where first met with, lies in a broad valley or basin, a little southward of the mines of Los Hornos: the lower half alone contains gypsum, not in great masses as in the Cordillera, but in innumerable thin layers, seldom more than an inch or two in thickness. The gypsum is either opaque or transparent, and is associated with carbonate of lime. The layers alternate with numerous varying ones of a calcareous clay-shale (with strong aluminous odour, adhering to the tongue, easily fusible into a pale green glass), more or less indurated, either earthy and cream-coloured, or greenish and hard. The more indurated varieties have a compact, homogeneous, almost crystalline fracture, and contain granules of crystallised oxide of iron. Some of the varieties almost resemble honestones. There is also a little black, hardly fusible, siliceo- calcareous clay-slate, like some of the varieties alternating with gypsum on the Peuquenes range.

The upper half of this gypseous formation is mainly formed of the same calcareous clay-shale rock, but without any gypsum, and varying extremely in nature: it passes from a soft, coarse, earthy, ferruginous state, including particles of quartz, into compact claystones with crystallised oxide of iron, – into porcellanic layers, alternating with seams of calcareous matter, – and into green porcelain-jasper, excessively hard, but easily fusible. Strata of this nature alternate with much black and brown siliceo-calcareous slate, remarkable from the wonderful number of huge embedded logs of silicified wood. This wood, according to Mr. R. Brown, is (judging from several specimens) all coniferous. Some of the layers of the black siliceous slate contained irregular angular fragments of imperfect pitchstone, which I believe, as in the Uspallata range, has originated in a metamorphic process. There was one bed of a marly tufaceous nature, and of little specific gravity. Veins of agate and calcareous spar are numerous. The whole of this gypseous formation, especially the upper half, has been injected, metamorphosed, and locally contorted by numerous hillocks of intrusive porphyries crowded together in an extraordinary manner. These hillocks consist of purple claystone and of various other porphyries, and of much white feldspathic greenstone passing into andesite; this latter variety included in one case crystals of orthitic and albitic feldspar touching each other, and others of hornblende, chlorite, and epidote. The strata surrounding these intrusive hillocks at the mines of Los Hornos, are intersected by many veins of copper-pyrites, associated with much micaceous iron-ore, and by some of gold: in the neighbourhood of these veins the rocks are blackened and much altered. The gypsum near the intrusive masses is always opaque. One of these hillocks of porphyry was capped by some stratified porphyritic conglomerate, which must have been brought up from below, through the whole immense thickness of the overlying gypseous formation. The lower beds of the gypseous formation resemble the corresponding and probably contemporaneous strata of the main Cordillera; whilst the upper beds in several respects resemble those of the Uspallata chain, and possibly may be contemporaneous with them; for I have endeavoured to show that the Uspallata beds were accumulated subsequently to the gypseous or Neocomian formations of the Cordillera.

На страницу:
26 из 32