bannerbanner
More Letters of Charles Darwin — Volume 2
More Letters of Charles Darwin — Volume 2полная версия

Полная версия

More Letters of Charles Darwin — Volume 2

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
23 из 40

You ask about my doctrine which led me to expect that trees would tend to have separate sexes. I am inclined to believe that no organic being exists which perpetually self-fertilises itself. This will appear very wild, but I can venture to say that if you were to read my observations on this subject you would agree it is not so wild as it will at first appear to you, from flowers said to be always fertilised in bud, etc. It is a long subject, which I have attended to for eighteen years. Now, it occurred to me that in a large tree with hermaphrodite flowers, we will say it would be ten to one that it would be fertilised by the pollen of its own flower, and a thousand or ten thousand to one that if crossed it would be crossed only with pollen from another flower of same tree, which would be opposed to my doctrine. Therefore, on the great principle of "Nature not lying," I fully expected that trees would be apt to be dioecious or monoecious (which, as pollen has to be carried from flower to flower every time, would favour a cross from another individual of the same species), and so it seems to be in Britain and New Zealand. Nor can the fact be explained by certain families having this structure and chancing to be trees, for the rule seems to hold both in genera and families, as well as in species.

I give you full permission to laugh your fill at this wild speculation; and I do not pretend but what it may be chance which, in this case, has led me apparently right. But I repeat that I feel sure that my doctrine has more probability than at first it appears to have. If you had not asked, I should not have written at such length, though I cannot give any of my reasons.

The Leguminosae are my greatest opposers: yet if I were to trust to observations on insects made during many years, I should fully expect crosses to take place in them; but I cannot find that our garden varieties ever cross each other. I do NOT ask you to take any trouble about it, but if you should by chance come across any intelligent nurseryman, I wish you would enquire whether they take any pains in raising the varieties of papilionaceous plants apart to prevent crossing. (I have seen a statement of naturally formed crossed Phaseoli near N. York.) The worst is that nurserymen are apt to attribute all varieties to crossing.

Finally I incline to believe that every living being requires an occasional cross with a distinct individual; and as trees from the mere multitude of flowers offer an obstacle to this, I suspect this obstacle is counteracted by tendency to have sexes separated. But I have forgotten to say that my maximum difficulty is trees having papilionaceous flowers: some of them, I know, have their keel-petals expanded when ready for fertilisation; but Bentham does not believe that this is general: nevertheless, on principle of nature not lying, I suspect that this will turn out so, or that they are eminently sought by bees dusted with pollen. Again I do NOT ask you to take trouble, but if strolling under your Robinias when in full flower, just look at stamens and pistils whether protruded and whether bees visit them. I must just mention a fact mentioned to me the other day by Sir W. Macarthur, a clever Australian gardener: viz., how odd it was that his Erythrinas in N.S. Wales would not set a seed, without he imitated the movements of the petals which bees cause. Well, as long as you live, you will never, after this fearfully long note, ask me why I believe this or that.

LETTER 586. TO ASA GRAY. June 18th {1857}.

It has been extremely kind of you telling me about the trees: now with your facts, and those from Britain, N. Zealand, and Tasmania I shall have fair materials for judging. I am writing this away from home, but I think your fraction of 95/132 is as large as in other cases, and is at least a striking coincidence.

I thank you much for your remarks about my crossing notions, to which, I may add, I was led by exactly the same idea as yours, viz., that crossing must be one means of eliminating variation, and then I wished to make out how far in animals and vegetables this was possible. Papilionaceous flowers are almost dead floorers to me, and I cannot experimentise, as castration alone often produces sterility. I am surprised at what you say about Compositae and Gramineae. From what I have seen of latter they seemed to me (and I have watched wheat, owing to what L. de Longchamps has said on their fertilisation in bud) favourable for crossing; and from Cassini's observations and Kolreuter's on the adhesive pollen, and C.C. Sprengel's, I had concluded that the Compositae were eminently likely (I am aware of the pistil brushing out pollen) to be crossed. (586/1. This is an instance of the curious ignorance of the essential principles of floral mechanism which was to be found even among learned and accomplished botanists such as Gray, before the publication of the "Fertilisation of Orchids." Even in 1863 we find Darwin explaining the meaning of dichogamy in a letter to Gray.) If in some months' time you can find time to tell me whether you have made any observations on the early fertilisation of plants in these two orders, I should be very glad to hear, as it would save me from great blunder. In several published remarks on this subject in various genera it has seemed to me that the early fertilisation has been inferred from the early shedding of the pollen, which I think is clearly a false inference. Another cause, I should think, of the belief of fertilisation in the bud, is the not-rare, abnormal, early maturity of the pistil as described by Gartner. I have hitherto failed in meeting with detailed accounts of regular and normal impregnation in the bud. Podostemon and Subularia under water (and Leguminosae) seem and are strongest cases against me, as far as I as yet know. I am so sorry that you are so overwhelmed with work; it makes your VERY GREAT kindness to me the more striking.

It is really pretty to see how effectual insects are. A short time ago I found a female holly sixty measured yards from any other holly, and I cut off some twigs and took by chance twenty stigmas, cut off their tops, and put them under the microscope: there was pollen on every one, and in profusion on most! weather cloudy and stormy and unfavourable, wind in wrong direction to have brought any.

LETTER 587. TO J.D. HOOKER. Down, January 12th {1858}.

I want to ask a question which will take you only few words to answer. It bears on my former belief (and Asa Gray strongly expressed opinion) that Papilionaceous flowers were fatal to my notion of there being no eternal hermaphrodites. First let me say how evidence goes. You will remember my facts going to show that kidney-beans require visits of bees to be fertilised. This has been positively stated to be the case with Lathyrus grandiflorus, and has been very partially verified by me. Sir W. Macarthur tells me that Erythrina will hardly seed in Australia without the petals are moved as if by bee. I have just met the statement that, with common bean, when the humble-bees bite holes at the base of the flower, and therefore cease visiting the mouth of the corolla, "hardly a bean will set." But now comes a much more curious statement, that {in} 1842-43, "since bees were established at Wellington (New Zealand), clover seeds all over the settlement, WHICH IT DID NOT BEFORE." (587/1. See Letter 362, Volume I.) The writer evidently has no idea what the connection can be. Now I cannot help at once connecting this statement (and all the foregoing statements in some degree support each other, as all have been advanced without any sort of theory) with the remarkable absence of Papilionaceous plants in N. Zealand. I see in your list Clianthus, Carmichaelia (four species), a new genus, a shrub, and Edwardsia (is latter Papilionaceous?). Now what I want to know is whether any of these have flowers as small as clover; for if they have large flowers they may be visited by humble-bees, which I think I remember do exist in New Zealand; and which humble-bees would not visit the smaller clover. Even the very minute little yellow clover in England has every flower visited and revisited by hive-bees, as I know by experience. Would it not be a curious case of correlation if it could be shown to be probable that herbaceous and small Leguminosae do not exist because when {their} seeds {are} washed ashore (!!!) no small bees exist there. Though this latter fact must be ascertained. I may not prove anything, but does it not seem odd that so many quite independent facts, or rather statements, should point all in one direction, viz., that bees are necessary to the fertilisation of Papilionaceous flowers?

LETTER 588. TO JOHN LUBBOCK (Lord Avebury). Sunday {1859}.

Do you remember calling my attention to certain flowers in the truss of Pelargoniums not being true, or not having the dark shade on the two upper petals? I believe it was Lady Lubbock's observation. I find, as I expected, it is always the central or sub-central flower; but what is far more curious, the nectary, which is blended with the peduncle of the flowers, gradually lessens and quite disappears (588/1. This fact is mentioned in Maxwell Masters' "Vegetable Teratology" (Ray Society's Publications), 1869, page 221.), as the dark shade on the two upper petals disappears. Compare the stalk in the two enclosed parcels, in each of which there is a perfect flower.

Now, if your gardener will not be outrageous, do look over your geraniums and send me a few trusses, if you can find any, having the flowers without the marks, sending me some perfect flowers on same truss. The case seems to me rather a pretty one of correlation of growth; for the calyx also becomes slightly modified in the flowers without marks.

LETTER 589. TO MAXWELL MASTERS. Down, April 7th {1860}.

I hope that you will excuse the liberty which I take in writing to you and begging a favour. I have been very much interested by the abstract (too brief) of your lecture at the Royal Institution. Many of the facts alluded to are full of interest for me. But on one point I should be infinitely obliged if you could procure me any information: namely, with respect to sweet-peas. I am a great believer in the natural crossing of individuals of the same species. But I have been assured by Mr. Cattell (589/1. The nurseryman he generally dealt with.), of Westerham, that the several varieties of sweet-pea can be raised close together for a number of years without intercrossing. But on the other hand he stated that they go over the beds, and pull up any false plant, which they very naturally attribute to wrong seeds getting mixed in the lot. After many failures, I succeeded in artificially crossing two varieties, and the offspring out of the same pod, instead of being intermediate, was very nearly like the two pure parents; yet in one, there was a trace of the cross, and these crossed peas in the next generation showed still more plainly their mongrel origin. Now, what I want to know is, whether there is much variation in sweet-peas which might be owing to natural crosses. What I should expect would be that they would keep true for many years, but that occasionally, perhaps at long intervals, there would be a considerable amount of crossing of the varieties grown close together. Can you give, or obtain from your father, any information on this head, and allow me to quote your authority? It would really be a very great favour and kindness.

LETTER 590. TO J.D. HOOKER.

(590/1. The genera Scaevola and Leschenaultia, to which the following letter refers, belong to the Goodeniaceae (Goodenovieae, Bentham & Hooker), an order allied to the Lobeliaceae, although the mechanism of fertilisation resembles rather more nearly that of Campanula. The characteristic feature of the flower in this order is the indusium, or, as Delpino (590/2. Delpino's observations on Dichogamy, summarised by Hildebrand in "Bot. Zeitung," 1870, page 634.) calls it, the "collecting cup": this cuplike organ is a development of the style, and serves the same function as the hairs on the style of Campanula, namely, that of taking the pollen from the anthers and presenting it to the visiting insect. During this stage the immature stigma is at the bottom of the cup, and though surrounded by pollen is incapable of being pollinated. In most genera of the order the pollen is pushed out of the indusium by the growth of the style or stigma, very much as occurs in Lobelia or the Compositae. Finally the style emerges from the indusium (590/3. According to Hamilton ("Proc. Linn. Soc. N. S. Wales," X., 1895, page 361) the stigma rarely grows beyond the indusium in Dampiera. In the same journal (1885-6, page 157, and IX., 1894, page 201) Hamilton has given a number of interesting observations on Goodenia, Scaevola, Selliera, Brunonia. There seem to be mechanisms for cross- and also for self-fertilisation.), the stigmas open out and are pollinated from younger flowers. The mechanism of fertilisation has been described by F. Muller (590/4. In a letter to Hildebrand published in the "Bot. Zeitung," 1868, page 113.), and more completely by Delpino (loc. cit.).

Mr. Bentham wrote a paper (590/5. "Linn. Soc. Journal," 1869, page 203.) on the style and stigma in the Goodenovieae, where he speaks of Mr. Darwin's belief that fertilisation takes place outside the indusium. This statement, which we imagine Mr. Bentham must have had from an unpublished source, was incomprehensible to him as long as he confined his work to such genera as Goodenia, Scaevola, Velleia, Coelogyne, in which the mechanism is much as above described; but on examining Leschenaultia the meaning became clear. Bentham writes of this genus: — "The indusium is usually described as broadly two-lipped, without any distinct stigma. The fact appears to be that the upper less prominent lip is stigmatic all over, inside and out, with a transverse band of short glandular hairs at its base outside, while the lower more prominent lip is smooth and glabrous, or with a tuft of rigid hairs. Perhaps this lower lip and the upper band of hairs are all that correspond to the indusium of other genera; and the so-called upper lip, outside of which impregnation may well take place, as observed by Mr. Darwin, must be regarded as the true stigma."

Darwin's interest in the Goodeniaceae was due to the mechanism being apparently fitted for self-fertilisation. In 1871 a writer signing himself F.W.B. made a communication to the "Gardeners' Chronicle" (590/6. 1871, page 1103.), in which he expresses himself as "agreeably surprised" to find Leschenaultia adapted for self-fertilisation, or at least for self-pollinisation. This led Darwin to publish a short note in the same journal, in which he describes the penetration of pollen-tubes into the viscid surface on the outside of the indusium. (590/7. 1871, page 1166. He had previously written in the "Journal of Horticulture and Cottage Gardener," May 28th, 1861, page 151: — "Leschenaultia formosa has apparently the most effective contrivance to prevent the stigma of one flower ever receiving a grain of pollen from another flower; for the pollen is shed in the early bud, and is there shut up round the stigma within a cup or indusium. But some observations led me to suspect that nevertheless insect agency here comes into play; for I found by holding a camel-hair pencil parallel to the pistil, and moving it as if it were a bee going to suck the nectar, the straggling hairs of the brush opened the lip of the indusium, entered it, stirred up the pollen, and brought out some grains. I did this to five flowers, and marked them. These five flowers all set pods; whereas only two other pods set on the whole plant, though covered with innumerable flowers...I wrote to Mr. James Drummond, at Swan River in Australia...and he soon wrote to me that he had seen a bee cleverly opening the indusium and extracting pollen.") He also describes how a brush, pushed into the flower in imitation of an insect, presses "against the slightly projecting lower lip of the indusium, opens it, and some of the hairs enter and become smeared with pollen." The yield of pollen is therefore differently arranged in Leschenaultia; for in the more typical genera it depends on the growth of the style inside the indusium. Delpino, however (see Hildebrand's version, loc. cit.), describes a similar opening of the cup produced by pressure on the hairs in some genera of the order.)

Down, June 7th {1860}.

Best and most beloved of men, I supplicate and entreat you to observe one point for me. Remember that the Goodeniaceae have weighed like an incubus for years on my soul. It relates to Scaevola microcarpa. I find that in bud the indusium collects all the pollen splendidly, but, differently from Leschenaultia, cannot be afterwards easily opened. Further, I find that at an early stage, when the flower first opens, a boat-shaped stigma lies at the bottom of the indusium, and further that this stigma, after the flower has some time expanded, grows very rapidly, when the plant is kept hot, and pushes out of the indusium a mass of pollen; and at same time two horns project at the corners of the indusium. Now the appearance of these horns makes me suppose that these are the stigmatic surfaces. Will you look to this? for if they be by the relative position of the parts (with indusium and stigma bent at right angles to style) {I am led to think} that an insect entering a flower could not fail to have {its} whole back (at the period when, as I have seen, a whole mass of pollen is pushed out) covered with pollen, which would almost certainly get rubbed on the two horns. Indeed, I doubt whether, without this aid, pollen would get on to the horns. What interests me in the case is the analogy in result with the Lobelia, but by very different means. In Lobelia the stigma, before it is mature, pushes by its circular brush of hairs the pollen out of the conjoined anthers; here the indusium collects pollen, and then the growth of the stigma pushes it out. In the course of about 1 1/2 hour, I found an indusium with hairs on the outer edge perfectly clogged with pollen, and horns protruded, which before the 1 1/2 hour had not one grain of pollen outside the indusium, and no trace of protruding horns. So you will see how I wish to know whether the horns are the true stigmatic surfaces. I would try the case experimentally by putting pollen on the horns, but my greenhouse is so cold, and my plant so small, and in such a little pot, that I suppose it would not seed...

The little length of stigmatic horns at the moment when pollen is forced out of the indusium, compared to what they ultimately attain, makes me fancy that they are not then mature or ready, and if so, as in Lobelia, each flower must be fertilised by pollen from another and earlier flower.

How curious that the indusium should first so cleverly collect pollen and then afterwards push it out! Yet how closely analogous to Campanula brushing pollen out of the anther and retaining it on hairs till the stigma is ready. I am going to try whether Campanula sets seed without insect agency.

LETTER 591. TO J.D. HOOKER.

(591/1. The following letters are given here rather than in chronological order, as bearing on the Leschenaultia problem. The latter part of Letter 591 refers to the cleistogamic flowers of Viola.)

Down, May 1st {1862}.

If you can screw out time, do look at the stigma of the blue Leschenaultia biloba. I have just examined a large bud with the indusium not yet closed, and it seems to me certain that there is no stigma within. The case would be very important for me, and I do not like to trust solely to myself. I have been impregnating flowers, but it is rather difficult...

I have just looked again at Viola canina. The case is odder: only 2 stamens which embrace the stigma have pollen; the 3 other stamens have no anther-cells and no pollen. These 2 fertile anthers are of different shape from the 3 sterile others, and the scale representing the lower lip is larger and differently shaped from the 4 other scales representing 4 other petals.

In V. odorata (single flower) all five stamens produce pollen. But I daresay all this is known.

LETTER 592. TO J.D. HOOKER. November 3rd {1862}.

Do you remember the scarlet Leschenaultia formosa with the sticky margin outside the indusium? Well, this is the stigma — at least, I find the pollen-tubes here penetrate and nowhere else. What a joke it would be if the stigma is always exterior, and this by far the greatest difficulty in my crossing notions should turn out a case eminently requiring insect aid, and consequently almost inevitably ensuring crossing. By the way, have you any other Goodeniaceae which you could lend me, besides Leschenaultia and Scaevola, of which I have seen enough?

I had a long letter the other day from Crocker of Chichester; he has the real spirit of an experimentalist, but has not done much this summer.

LETTER 593. TO F. MULLER. Down, April 9th and 15th {1866}.

I am very much obliged by your letter of February 13th, abounding with so many highly interesting facts. Your account of the Rubiaceous plant is one of the most extraordinary that I have ever read, and I am glad you are going to publish it. I have long wished some one to observe the fertilisation of Scaevola, and you must permit me to tell you what I have observed. First, for the allied genus of Leschenaultia: utterly disbelieving that it fertilises itself, I introduced a camel-hair brush into the flower in the same way as a bee would enter, and I found that the flowers were thus fertilised, which never otherwise happens; I then searched for the stigma, and found it outside the indusium with the pollen-tubes penetrating it; and I convinced Dr. Hooker that botanists were quite wrong in supposing that the stigma lay inside the indusium. In Scaevola microcarpa the structure is very different, for the immature stigma lies at the base within the indusium, and as the stigma grows it pushes the pollen out of the indusium, and it then clings to the hairs which fringe the tips of the indusium; and when an insect enters the flower, the pollen (as I have seen) is swept from these long hairs on to the insect's back. The stigma continues to grow, but is not apparently ready for impregnation until it is developed into two long protruding horns, at which period all the pollen has been pushed out of the indusium. But my observations are here at fault, for I did not observe the penetration of the pollen-tubes. The case is almost parallel with that of Lobelia. Now, I hope you will get two plants of Scaevola, and protect one from insects, leaving the other uncovered, and observe the results, both in the number of capsules produced, and in the average number of seeds in each. It would be well to fertilise half a dozen flowers under the net, to prove that the cover is not injurious to fertility.

With respect to your case of Aristolochia, I think further observation would convince you that it is not fertilised only by larvae, for in a nearly parallel case of an Arum and a Aristolochia, I found that insects flew from flower to flower. I would suggest to you to observe any cases of flowers which catch insects by their probosces, as occurs with some of the Apocyneae (593/1. Probably Asclepiadeae. See H. Muller, "Fertilisation of Flowers," page 396.); I have never been able to conceive for what purpose (if any) this is effected; at the same time, if I tempt you to neglect your zoological work for these miscellaneous observations I shall be guilty of a great crime.

To return for a moment to the indusium: how curious it is that the pollen should be thus collected in a special receptacle, afterwards to be swept out by insects' agency!

I am surprised at what you tell me about the fewness of the flowers of your native orchids which produce seed-capsules. What a contrast with our temperate European species, with the exception of some species of Ophrys! — I now know of three or four cases of self-fertilising orchids, but all these are provided with means for an occasional cross.

I am sorry to say Dr. Cruger is dead from a fever.

I received yesterday your paper in the "Botanische Zeitung" on the wood of climbing plants. (593/2. Fritz Muller, "Ueber das Holz einiger um Desterro wachsenden Kletterpflanzen." "Botanische Zeitung," 1866, pages 57, 65.) I have read as yet only your very interesting and curious remarks on the subject as bearing on the change of species; you have pleased me by the very high compliments which you pay to my paper. I have been at work since March 1st on a new English edition (593/3. The 4th Edition.) of my "Origin," of which when published I will send you a copy. I have much regretted the time it has cost me, as it has stopped my other work. On the other hand, it will be useful for a new third German edition, which is now wanted. I have corrected it largely, and added some discussions, but not nearly so much as I wished to do, for, being able to work only two hours daily, I feared I should never get it finished. I have taken some facts and views from your work "Fur Darwin"; but not one quarter of what I should like to have quoted.

На страницу:
23 из 40