bannerbanner
The Romance of Plant Life
The Romance of Plant Life

Полная версия

The Romance of Plant Life

Язык: Английский
Год издания: 2017
Добавлена:
Настройки чтения
Размер шрифта
Высота строк
Поля
На страницу:
6 из 7

But a still more extraordinary fact is the manner in which the root-branches arrange to grow in such a way that they search every part of the soil.

The main root in many plants grows straight down, or as nearly as it can do so. Its branches are inclined downwards at a quite definite angle which is often 30°-45° to the surface. Moreover, these branches come off in quite a regular way. Each keeps growing in its own special direction to the east, south-east, or west, or whatever it may be, of its parent root.

Have they some extraordinary sense of the direction of the points of the compass? It is said that if a side root, which is growing, say for instance downwards and westwards, is turned in some other direction, it will after a time resume its original westerly voyage. This fact is a most extraordinary one, if true, but it can scarcely be said that it has been proved, and, as will be shown later, there are other curious facts in the behaviour of roots which might explain the experiment without assuming that roots know the points of the compass.

If one cuts a branch of willow and plants it upside down in the earth, it will very likely take root and grow. Its appearance will be most extraordinary, for the roots will grow downwards, whilst the branches, instead of growing in the direction of the old branches, turn round and grow upwards.34

Why do roots generally grow downwards? The fact is so familiar that the difficulty of answering does not, at first sight, seem so great as it really is.

Pfeffer, the great physiologist, has the following interesting comparison. Suppose a man is trying to find his way in the dark, then a single lingering ray of light gives him an impulse to walk towards it.35 So our root, also in the dark, feels the pull of gravity and endeavours to grow downwards. Others have compared the direction of gravity to the sailor's compass, and suppose that the root is guided in the same sort of way.

But a young, vigorous root making or forcing its way in darkness through stones and heavy earth is a most interesting and fascinating study.

There are the most extraordinary coincidences in its behaviour. It has the property of always doing exactly the right thing in any emergency.

It is of course intended to keep below the ground and in the dark. So we find that if roots are uncovered, they will turn away from the light and burrow into the earth again. They avoid light just as a worm would do.

Roots are of course intended to absorb or suck in water. If there is a drain in the soil or a place where water collects, the roots will grow towards that place. Very often they form a dense spongy mass of fibres which may almost choke the drain. Along a riverside one can often find great fibrous masses of tree roots near the water. But how does the root learn that the water is there and turn away from its original track to find it? It certainly does so!

Then again, Herr Lilienfeld has recently shown that roots seem able to turn away from poisonous materials in the soil and to seek out and grow towards valuable and nutritious substances. He found that peas, beans, sunflower, and other roots were very sensitive to different substances in the soil, and were directly attracted by what was good for them and turned aside from what was unwholesome.

This property and the power of growing towards water probably explain the mysterious sense of direction alluded to above, for roots will take a line which has not been exhausted by their neighbours.36

But of all these wonderful properties, the most remarkable is the way in which roots find their way past stones and other obstacles in the soil. They insinuate themselves into winding cracks and crawl round stones with an ingenuity that makes one wonder if they can possibly be without some sort of intelligence.

It is the very tip or end of the young root that seems to be responsible; for if, in the course of its journeyings underground, it should strike a stone or something hard, the root does not grow on and flatten itself.

But some sort of message is sent back from the tip to the growing part which is a short distance behind it. After this message has been received, the growing part begins to curve sideways, so that the tip is brought clear of the obstacle and can probably proceed triumphantly upon its way. The inexplicable part is that the growing part which curves has never been touched at all, but simply answers to the message from the tip.37

This is perhaps the most reasonable and intelligent behaviour found in the whole vegetable world, and it is not surprising that Darwin compared the root-tip to a brain.

These extraordinary responses fill one with astonishment, but there are others still more interesting and remarkable. It will be remembered that we have already shown how different the soil is at different levels. The subsoil, soil, and uppermost layers are all quite different from one another.

This may explain why it is that many plants seem to prefer to develop their roots at one particular depth below the surface. Not only so, but they find their own favourite level in the most persevering way.

If, for instance, you sow a barley-corn at too great a depth, the seed germinates and forms a few roots, but it immediately sends out a stem which grows upwards towards the light. As soon as this stem has reached the proper place, which is just below the surface, there is an enormous development of roots, which begin to search and explore their favourite stratum of soil.38

In some few cases one can see in a dim sort of way the reason for the level which certain plants prefer. Thus the underground stems of the common Thistle, which are very long and fleshy, are found just a few inches below the level usually reached by plough or spade. This makes it very difficult to tear them out. Even if grubbers with long spikes which reach as deep as these buried stems are driven through the ground, it generally happens that the stems are only cut in pieces and not dragged up. These hardy weeds are not much injured by little accidents of this kind, for each separate bit will form upright thistle stems next year. In fact if one cuts this fleshy subterranean runner of the Thistle into pieces a quarter of an inch long, each piece will probably become a Thistle.

Sometimes indeed these weeds are carried from one field to another by pieces of them sticking in the very machines which are used to eradicate them.

The Bishopsweed is one of the hardest cases. The writer was once ambitious enough to try to dig up an entire plant of this horrid weed. The first foot or so revealed no sign of the end of the branching runners, and it was not until a hole about four feet deep and five feet across had been excavated that there was any sign of an end to the plant.

When it was at last removed, the original deeply buried stem was found to give off branches which again branched in a most complicated manner, until almost every green shoot of Bishopsweed39 within a space six feet in diameter was seen to be really a branch of this one original plant! So to eradicate the plant it would have been necessary to dig over the whole garden to a depth of at least five or six feet.

How did the stem get down to such a depth below the surface? This is one of the most curious stories in plant life, and the process which we shall now try to describe has only been explained within the last few years.40

The seed of the Wild Garlic (Allium ursinum) lies at first upon the surface of the ground, but it is soon buried by a growth of the stalk of the seed-leaf, which pushes the germ down below the earth. As soon as it is buried, roots are formed and pass obliquely downwards, where they become fixed by forming root-hairs all round themselves. These root-hairs round every root hold its tip firmly in the earth; then these same roots contract or shorten, which of course hauls down the root a little deeper in the earth. One might compare it to a few men hauling down a balloon by ropes attached to the car. About September to November, roots of quite a different character are formed; these explore the surrounding soil and gather in food and moisture.

Then the roots rest during the winter, when the buds and young leaves are being formed. In April the buds begin to push out their leaves and a new ring of roots appear. These April roots are quite different from the September ones. They again fix themselves firmly and then contract, becoming fully a third shorter than they were originally. The bulb is dragged down still deeper below the surface. It flowers in May and fruits in June and July. Then in September the same series of operations begins again. The process goes on until the plant is three to five inches below the ground.

It follows from all this, that every year the roots find new ground to explore and utilize. Nor is the Wild Garlic at all exceptional in this respect. A great many plants have roots which contract and drag the bulb or stem after them deeper into the earth. Something of the same sort happens, for instance, to Bramble branches. They arch or droop over, when growing, so that the end touches the earth. On the underside of the tip, as soon as it begins to rest on the ground, roots are formed. These roots make their way into the ground, and then, when fixed, they shorten or contract, so that the end of the branch is dragged down to a depth of several inches. After this has happened the old branch generally dies away, and a young, vigorous Bramble develops from its buried tip.

Raspberry branches also are often buried; their roots become coiled or rolled in a very curious manner. The end of the root becomes firmly attached in the soil, and then the rest of it revolves like a tendril so as to draw the stem deeper into the earth.41

On any ordinary roadside in the country one is sure to find the rosettes of the common Dandelion and of the Rats-tail Plantain (Plantago major). These are two of the most interesting plants in the world, although they are vulgarly common. How is it that their leaves are always at the level of the ground? The stem is always growing upwards; every year fresh circles of leaves are formed above the older ones. Yet the crown of the stem is never so much raised up above the ground that the toe of a boot would be likely to knock it off. It is always kept so deep in the earth, that it is by no means easy to kick or "howk" the crown out of the ground.

The Dandelion root contracts very strongly at the end of the season, and by this shortening or contraction keeps its leaves just at the soil level. The Plantain sends out about forty to sixty oblique downward-growing roots, which fix themselves in the soil by throwing out branch roots. These forty to sixty roots are at first about ten inches long, but, as soon as they are firmly attached, they contract, and pull the stem with its crown of leaves about one-third of an inch deeper. This is just enough to keep the leaves flat on the ground and to prevent any possible injury from passers-by.

So that in finding their favourite level in the soil, plants are often pulled or hauled about by the roots. But they are not always moved by the roots. Even though buried in darkness, they seem able in some way to tell when they are in the most favourable position.

Every gardener knows that Autumn Crocus and other bulbs do not remain in the same position. They wander below ground in a curious and inexplicable fashion.

The Solomon's Seal has an underground, fleshy stem, which prefers to grow at a definite depth. If it is planted close to the surface, then the point of the next year's little fleshy bud turns downwards; next year it again turns downwards, and so on every year, until the stem has reached its proper depth. Then it grows horizontally. Similarly, if it is planted too deep it grows upwards.

Thus if one wishes to realize the underground life of plants, one must picture to oneself: —

1. The usual descending roots, whose system of branching may be compared to the ordinary branching above ground. It is often not unlike the reflection in water of the tree itself, such as one might see on a fine winter's day along the shore of some still lake.

2. The bold, exploring, horizontal runners of Couchgrass, Thistle, Bishopsweed, etc., vigorously pushing their way at a depth too great for the gardener's spade.

3. All sorts of bulbs, runners, and roots being slowly hauled or dragged about till they get into exactly the right position, but never remaining for two years in exactly the same place. All have their favourite depth42—



The water evaporating on the surface of the soil must, as it rises from the permanent water-level below, pass the gauntlet of all these thirsty rootlets and their hairs. Tree-roots will be ready to intercept it at ten feet depth, many herbaceous plants will suck it in at depths of five to six feet, and in the upper layers of soil it will have to pass root-system after root-system from Asparagus to Paris, so that very little will be lost.

Perhaps of more importance are the bacteria-germs, and dissolved mineral salts in the rainwater as it trickles down from the surface. The soil particle acts as a filter: at every inch of the descent some of the bacteria and salts will be left, so that by the time the level of Asparagus has been reached there will be exceedingly few, and the water is comparatively speaking pure. The effect of this vigorous underground life is often visible on the surface. Roots, and particularly tree-roots, are often extraordinarily strong. Kerner, in his invaluable Natural History of Plants, has a beautiful picture of a young larch tree which had grown in a fissure of a huge boulder.

In attempting to grow, the root had forced up part of this stone. It was estimated that it had lifted a weight of 3000 lb., though it was only some ten inches in diameter.

Along a dry-stone wall, or even near houses, the growth of tree-roots very often damages the entire wall, which may be entirely overthrown if the tree is too near. The force of the growth of the roots is so great that even a six-foot stone wall cannot keep them down.

Quite a young seedling root, in forcing itself through the soil, may exercise a pressure of two-thirds to four-fifths of a pound!

This is of course necessary, if one remembers that it has to drive itself through the earth, pushing aside and compressing the earth particles along its course.

CHAPTER VII

HIGH MOUNTAINS, ARCTIC SNOWS

The life of a cherry tree – Cherries in March – Flowering of gorse – Chickweed's descendants – Forest fires in Africa – Spring passing from Italy to the frozen North – Life in the Arctic – Dwarfs – Snow-melting soldanellas – Highland Arctic-Alpine plants – Their history – Arctic Britain – Edelweiss – An Alpine garden.

IT is impossible to understand and very difficult to explain the sort of life and consciousness which is enjoyed by plants.

That they do live is obvious; we know instinctively that they enjoy fine weather in summer and gentle showers in spring, but we cannot prove it.

Much of a plant's life is concealed and hidden from us. Even the few explanations which have been given by certain observers are by no means generally accepted.

This is true even as regards the case of the Cherry tree, which has been experimented with, and fought over and argued about by botanists, and yet we only know a very little about its inner life.

When the leaves fall in autumn, next season's buds are already formed and are then about one-eighth of their full size. At this time the tree contains enormous quantities of food-stores, for the whole season's work of the leaves has been accumulating until this moment. During the long winter's "sleep" the tree is by no means at rest. It is arranging and packing up those stores in the safest place and in the most convenient form.

Just as a bear, before it retires to sleep during the winter, takes care to get as fat as possible, so the Cherry turns its starch to fat, and stores it away in the innermost and least exposed parts of the tree, that is in the central wood. As soon as the winter ends, and indeed before it has ended, preparations are beginning for the great moment of the year. For weeks there is a slow, gradual, almost imperceptible growth of the buds, then they develop with a rush, and in six to ten days double or treble their weight. Then comes the supreme moment, for the flower-buds suddenly burst open and the Cherry is in active and vigorous bloom and covered all over with exquisite blossoms. All last year's fats and starches are rapidly used up. Very soon the young leaves are beginning to make sugar and other food, which give some help during the ripening of the fruit.

The flowers are actively at work. One of our usual misconceptions as to the nature of a flower is that it is an emblem of peace, of restful enjoyment, of serene contemplation of its own beauty. That is very far from being the truth. The petals are actively, vigorously working. If one could take the pulse of a petal, which shows the rapidity of its breathing, one would find that it is twice as fast as that of the leaf. The work of changing water into vapour and pouring it out goes on three times as quickly in the petals (as compared with the leaves). Moreover their temperature is higher, and often distinctly above that of the atmosphere.

This feverish activity of the flowers themselves is matched by the hurrying crowds of excited and exhilarated insects which are searching every blossom.

No wonder that the Japanese Prime Minister, in the midst of their great and famous war, invited the whole cabinet to spend an afternoon watching the cherry trees in bloom!

From the blossom of the springtime all through summer and autumn follows one continuous spell of hard work. Day after day an endless stream of food is entering the stem; night after night it is condensed and arranged and repacked, until, when the leaves fall, the period of slow and quiet preparation begins again.

Under certain conditions it is possible for gardeners to modify the life of a cherry, and to make it bloom much earlier, but this is only possible within well-defined limits. It is no use trying to force it to bloom before January. It must have a quiet time after summer. But by beginning in January and by very carefully managing the temperature, it can be made to produce fruit quite early in the year.

The following account is given to show how very carefully gardeners have to work when they upset the ordinary course of Nature's events. The plant is taken into a greenhouse, and the temperature kept as follows: —



Not merely strong, forcing heat, but a little judicious cold, is necessary to get out the flowers and to ripen the fruit.43

Most flowers have very much the same general history as the cherry, but it must not be supposed that they are all alike. The differences are very interesting and curious.

Thus, for example, plants of our common Gorse, furze, or whin may be found in bloom at almost every season of the year. There are at least four seasons when there is that tremendous display of golden blossom which made the great Linnæus fall on his knees and burst into tears. These are about the 22nd March, 24th May, 15th August, and 21st November; yet there are enough odd flowers blooming in almost every month to give some cause for the saying, "The gorse is out of bloom when kissing is out of favour." The last practice, though uncleanly and dangerous, not only on general grounds, but on account of bacterial germs which may be transferred, has been authoritatively condemned in the United States, but it is still more or less popular in other countries at all seasons.

The Chickweed and some other of our annual weeds show a hardy disregard of climate. Its seeds germinate and grow at any time, so that flowers and seeds can be formed whenever there is a spell of favourable weather. Now one chickweed can produce 3000 seeds. Suppose that there are only five generations in the year, which is a very low estimate. Then one seed of chickweed might produce 3000 × 3000 × 3000 × 3000 individuals in one season!

Other plants show much the same tendency. In fine warm autumns a great many annuals bloom a second time. It is on record that forty-four spring species bloomed in one warm November. At the Cape and in other warm climates many of our annuals do not die at the end of autumn, but go on growing. They become perennial.

It is even possible to make a Tree Mignonette by pinching off the flower-buds, though this plant is usually an annual.

In fact plants are not absolutely confined to one rigid scheme, but they can alter and modify their blooming time if they find it convenient to do so. In the Mediterranean some blossom in early spring and others in late autumn, whilst in the dry, hot, and dusty summer very few flower.

In Central Africa during the dry season forest fires are by no means rare. The trees are scattered, and the ground is only covered by dried and withered grasses and sedges. One sees in the distance a rolling cloud of smoke, and soon one comes to a line of flame. It is not dangerous, not even very impressive, for a jump of three feet carries you over the flame and on to a desolate wilderness of black cinders, out of which stand up the scorched trunks and half-burnt branches of gaunt, naked trees. A day or two afterwards, bright blue and white and yellow flowers break out of those scorched branches and also from the ground.

It is difficult to understand why this happens, but certainly it is good for the flowers, which can be seen by insects from a long distance.

But these are unusual cases. Generally the warm breath of spring wakes up the bulbs and buds, and one after another has its moment of flowering.

Spring travels towards the North Pole at an average rate of four miles a day.

A pedestrian visiting Italy in the end of January might follow the spring northwards, and if he wished to accompany it all the way, it would be quite possible to do so without exceeding an ordinary day's march. He would have to reach North Germany by the end of March, Sweden in May, and by the end of June and July would find spring beginning in the desolate Arctic regions.

Of course the presence of mountains would make this tour a little difficult and devious, but still it is quite a possible undertaking. It would be very interesting, for he would be able to watch the cold and frost and chilliness of winter disappearing as the sun's rays thaw out a greater and greater extent of the cold and frozen North.

The life of an Arctic plant is truly set in the midst of many and great dangers.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

1

Kerner, Natural History of Plants; also Scott Elliot, Nature Studies – Plant Life.

2

The gas Carbonic acid consists of one part of Carbon and two of Oxygen. It is invisible, just as are the gaseous states of many liquids and solids. Water-vapour is not visible, though water (liquid) and ice can of course be seen. Starch, sugar, cell wall substance, etc., all contain Carbon, Oxygen, and Hydrogen. Vegetable fat is not well understood, but starch helps to form it.

3

The ascent is assisted by the osmotic absorption of water at the root and by evaporation at the leaves.

4

This is still the custom in the huts of the wizard or medicine-man in West Africa, where one finds small cushions stuck over with all sorts of poisonous plants, bits of human bones, and other loathsome accessories.

5

Cooke, British Fungi.

6

The same "woad" which was used by the Britons to paint themselves with.

7

Lascelles, Pharm. Journ., 23 May, 1903.

На страницу:
6 из 7